WHAT IS THE DUAL OF $C[0,1]$?

1. Orientation

The space $C[0,1]$ consists of the continuous real-valued functions defined on the unit interval. It is a vector space under pointwise addition and scalar multiplication, and is infinite dimensional since $x^{n} \in C[0,1]$ for every $n \in \mathbb{N}$. The uniform norm is defined on $C[0,1]$ as

$$
\|f\|=\sup _{0 \leq x \leq 1}|f(x)|, \quad f \in C[0,1] .
$$

Exercise 1.1. Prove $C[0,1]$ is complete as a metric space under the metric $d(f, g)=$ $\|f-g\|$. That is, show that if $f_{n} \rightarrow f$ uniformly then $f \in C[0,1]$.

We summarize the facts above by saying $C[0,1]$ is a Banach space, i.e. a normed linear space which is complete.

It turns out to be useful to consider elements of the dual space $(C[0,1])^{\prime}$ which consists of the continuous linear functionals $l: C[0,1] \rightarrow \mathbb{R}$. Linearity requires

$$
\begin{aligned}
l(f+g) & =l(f)+l(g), \quad \forall f, g \in C[0,1] \\
l(\lambda f) & =\lambda l(f), \quad \forall f \in C[0,1], \lambda \in \mathbb{R}
\end{aligned}
$$

and by continuity we mean

$$
f_{n} \rightarrow f \Longrightarrow l\left(f_{n}\right) \rightarrow l(f)
$$

The convergence on the left is uniform, i.e. $\left\|f_{n}-f\right\| \rightarrow 0$. The convergence on the right is that of a sequence of real numbers.

If l is linear, continuity at any one $f \in C[0,1]$ implies continuity on all of $C[0,1]$. In particular, a linear functional $l: C[0,1] \rightarrow \mathbb{R}$ is in the dual space $(C[0,1])^{\prime}$ if and only if

$$
f_{n} \rightarrow 0 \Longrightarrow l\left(f_{n}\right) \rightarrow 0
$$

A sufficient condition for continuity is the existence of a positive constant M such that

$$
\begin{equation*}
|l(f)| \leq M\|f\| \quad \forall f \in C[0,1] \tag{1.1}
\end{equation*}
$$

If a linear functional satisfies this condition we say it is norm-bounded and we define its norm $\|l\|$ to be the smallest such constant M for which (1.1) holds.

Suppose now l is continuous at zero, then there is a ball about the origin such that $|l(f)| \leq \epsilon$ whenever $\|f\| \leq \delta$. Given any $f \in C[0,1]$ we find

$$
\left|l\left(\delta \frac{f}{\|f\|}\right)\right| \leq \epsilon
$$

and hence l is norm-bounded with $\|l\| \leq \epsilon / \delta$. We have proved the following
Proposition 1.2. A linear functional $l: C[0,1] \rightarrow \mathbb{R}$ belongs to the dual space $(C[0,1])^{\prime}$ if and only if it is norm-bounded.

Let's see some examples.

Example 1.3. Fix $x_{0} \in[0,1]$ and define the "Dirac mass" at x_{0},

$$
\delta_{x_{0}}(f)=f\left(x_{0}\right)
$$

This is clearly in the dual space and has $\left\|\delta_{x_{0}}\right\|=1$.
Example 1.4. Given a sequence of points $x_{i} \in[0,1], i \in \mathbb{N}$ along with absolutely summable weights a_{i}, define

$$
l(f)=\sum_{i} a_{i} f\left(x_{i}\right)
$$

This is linear and has $\|l\| \leq \sum_{i}\left|a_{i}\right|$ so it is in the dual space. In fact $\|l\|=\sum_{i}\left|a_{i}\right|$ as can be seen by considering f^{n} with $f^{n}\left(x_{i}\right)=\operatorname{sign}\left(a_{i}\right), i=1, \ldots, n$.

Example 1.5. The Riemann integral is in the dual space. That is, the mapping

$$
f \mapsto I(f)=\int_{0}^{1} f d x
$$

is linear and has $\|I\| \leq 1$ by the triangle inequality for integration

$$
\left|\int f d x\right| \leq \int|f| d x
$$

By choosing $f=1$ we see $\|I\|=1$.
The next example is more complicated and involves defining a different type of integral known as the Lebesgue-Stieljies integral. It is worth understanding well.

2. The main example: Lebesgue-Stieljies integration

Given $\alpha \in B V[0,1]$ with $\alpha(0)=0$ we define an integral via the following recipe. Let $0=x_{0}<x_{1}<\cdots<x_{n}=1$ be a partition of $[0,1]$ and make the sum

$$
\sum_{k=0}^{n-1} f\left(x_{k+1}\right)\left(\alpha\left(x_{k+1}\right)-\alpha\left(x_{k}\right)\right)
$$

If $f \in C[0,1]$ then as we refine the partition and take the mesh size $\delta \downarrow 0$, the sum converges to a number

$$
\int_{0}^{1} f d \alpha=\lim _{\delta \downarrow 0} \sum_{k=0}^{n-1} f\left(x_{k+1}\right)\left(\alpha\left(x_{k+1}\right)-\alpha\left(x_{k}\right)\right) .
$$

Indeed if P_{1}, P_{2} are two partitions they have a common refinement P, and if the mesh sizes δ_{1}, δ_{2} are small enough then we can write

$$
\left|\sum_{P_{1}} f\left(x_{k+1}\right) \Delta \alpha_{k}-\sum_{P_{2}} f\left(x_{k+1}\right) \Delta \alpha_{k}\right| \leq 2 \epsilon \operatorname{Var}(\alpha)
$$

Now from our definition it is clear that the map $f \mapsto \mathcal{I}(f)=\int_{0}^{1} f d \alpha$ is linear. Moreover if we define the running total variation of α as

$$
|\alpha|(x)=\sup \left\{\sum_{k=0}^{n-1}\left|\alpha\left(x_{k+1}\right)-\alpha\left(x_{k}\right)\right|, 0=x_{0}<x_{1}<\cdots<x_{n}=x\right\}
$$

we find

$$
\left|\int_{0}^{1} f d \alpha\right| \leq \int_{0}^{1}|f| d|\alpha| \leq \operatorname{Var}(\alpha)\|f\|
$$

so that $\|\mathcal{I}\| \leq \operatorname{Var}(\alpha)$ and $\mathcal{I} \in(C[0,1])^{\prime}$. Again this inequality is actually equality, and this is a good exercise to work out before moving on.

Exercise 2.1. Prove $\|\mathcal{I}\|=\operatorname{Var}(\alpha)$. (Hint: consider non-decreasing α first.)
Exercise 2.2. Each of the examples from the previous section can be written in the form

$$
l(f)=\int_{0}^{1} f d \alpha
$$

for some $\alpha \in B V, \alpha(0)=0$. Work this out. Are the α 's uniquely determined?

3. The Riesz theorem

A theorem due to Riesz asserts that this last example is generic.
Theorem 3.1 (Riesz). Given $l \in(C[0,1])^{\prime}$ there exists $\alpha \in B V, \alpha(0)=0$ so that

$$
l(f)=\int f d \alpha \quad \forall f \in C[0,1]
$$

Exercise 3.2. Check that if $\alpha, \beta \in B V, \alpha(0)=\beta(0)=0$ satisfy

$$
\int f d \alpha=\int f d \beta \quad \forall f \in C[0,1]
$$

then $\alpha=\beta$ except at most countably many points. In fact, if α is non-decreasing prove

$$
\alpha(x) \leq \inf _{f \geq 1_{[0, x]}} \int f d \alpha \leq \alpha\left(x^{+}\right) .
$$

For a general $\alpha \in B V$ argue similarly to conclude $\alpha\left(x^{+}\right)=\lim _{\delta \downarrow 0} \alpha(x+\delta)$ is determined uniquely by knowledge of all the integrals $\left\{\int f d \alpha, f \in C[0,1]\right\}$.

Discussion: If we assume α is right-continuous then it is uniquely determined, and indeed we can assume this at $x \in(0,1]$ without changing anything we've said already. However, we may not simultaneously assume α is right-continuous at 0 and $\alpha(0)=0$ if we wish to reproduce the entire dual space. We chose $\alpha(0)=0$ simply to clean up the definition of the Lebesgue-Stiejies integral.

We begin the proof of the theorem by discussing the positive linear functionals, i.e. those linear functionals l with the property that $l(f) \geq 0$ if $f \geq 0$.

Exercise 3.3. Show every positive linear functional $l: C[0,1] \rightarrow \mathbb{R}$ is automatically continuous.

Given a positive linear functional l define

$$
\alpha(x)=\inf \left\{l(f) \mid 1_{[0, x]} \leq f, f \in C[0,1]\right\}, \quad 0<x \leq 1
$$

and set $\alpha(0)=0$. Then α is non-decreasing and it defines a Lebesgue-Stiejies integral. We will prove

$$
l(f)=\int_{0}^{1} f d \alpha \quad \forall f \in C[0,1]
$$

Pick a partition $0=x_{0}<x_{1}<\cdots<x_{n}=1$ on which f is almost constant, so $\left|f(x)-f\left(x_{k}\right)\right| \leq \epsilon$ whenever $x_{k-1} \leq x \leq x_{k+1}, k=1, \ldots, n-1$. Using the definition of α find functions

$$
1_{\left[0, x_{i}\right]} \leq \psi_{i} \leq 1_{\left[0, x_{i+1}\right]}, \quad i=1, \ldots, n-1
$$

satisfying

$$
\alpha\left(x_{i}\right) \leq l\left(\psi_{i}\right) \leq \alpha\left(x_{i}\right)+\frac{\epsilon}{n}
$$

If we take $\psi_{0}=0, \psi_{n}=1$ we may define a partition of unity

$$
\phi_{i}=\psi_{i}-\psi_{i-1}, \quad i=1, \ldots, n
$$

well-suited for approximation of f on the mesh. Then

$$
\left|l(f)-\sum_{i=1}^{n} f\left(x_{i}\right) l\left(\phi_{i}\right)\right| \leq\|l\| \epsilon
$$

and $\|l\|<\infty$ since every positive linear functional on $C[0,1]$ is automatically continuous. Also

$$
\sum_{i=1}^{n} f\left(x_{i}\right) l\left(\phi_{i}\right)=\sum_{i=0}^{n-1} f\left(x_{i+1}\right)\left(\alpha\left(x_{i+1}\right)-\alpha\left(x_{i}\right)\right)+e(n)
$$

where

$$
|e(n)| \leq\|f\| \epsilon
$$

so that

$$
\left|l(f)-\int_{0}^{1} f d \alpha\right| \leq(\|l\|+\|f\|) \epsilon
$$

Since this holds for all $\epsilon>0$ we have the result.
Given a general $l \in(C[0,1])^{\prime}$ we have to be more sly. First we define an auxiliary linear functional $|l|$ with the property that the linear functionals $|l| \pm l$ are positive. Then since $2 l=(|l|+l)-(|l|-l)$ we finish by applying the proof above twice and superimposing the results.

Now if we expect $l=\int \cdot d \alpha$ then it is natural to go after $|l|=\int \cdot d|\alpha|$. (Remember $|\alpha|$ does not signify the usual absolute value but rather the running total variation.) Therefore we define
$|\alpha|(x)=\inf _{y>x} \sup \left\{\sum\left|l\left(\psi_{i}\right)\right| \mid 1_{[0, x]} \leq \sum \psi_{i} \leq 1_{[0, y)}, \quad 0 \leq \psi_{i} \leq 1, \quad \psi_{i} \in C[0,1]\right\}, \quad 0<x \leq 1$
along with $|\alpha|(0)=0$. Note $|\alpha|$ is non-decreasing and finite since

$$
\sum\left|l\left(\psi_{i}\right)\right|=l\left(\sum \pm \psi_{i}\right) \leq\|l\|
$$

whenever ψ_{i} are admissable. Thus $|\alpha|$ defines a Lebesgue-Stieljies integral

$$
|l|(f)=\int f d|\alpha| \quad f \in C[0,1]
$$

and we claim

$$
|l(f)| \leq|l|(f) \quad \forall f \in C[0,1], f \geq 0
$$

As before, the heart of the proof is in setting up a useful partition of unity. Given $f \in C[0,1]$, begin by finding a partition $0=x_{0}<x_{1}<\cdots<x_{n}=1$ such that $\left|f(x)-f\left(x_{k}\right)\right| \leq \epsilon$ whenever $x_{k-1} \leq x \leq x_{k+1}, k=1, \ldots, n-1$. Then find $y_{k} \in\left(x_{k}, x_{k+1}\right)$ and admissable $\psi_{k, i}$ with

$$
1_{\left[0, x_{k}\right]} \leq \sum_{i} \psi_{k, i} \leq 1_{\left[0, y_{k}\right)}, \quad k=1, \ldots, n-1
$$

so that

$$
|\alpha|\left(x_{k}\right)-\frac{\epsilon}{n+1} \leq \sum_{i}\left|l\left(\psi_{k, i}\right)\right| \leq|\alpha|\left(x_{k}\right)+\frac{\epsilon}{n+1} .
$$

From the definition of $|\alpha|$ it is clear we can pick the $\psi_{k, i}$ inductively to include the previously chosen $\psi_{k-1, i}$ along with new admissable functions supported on $\left[x_{k-1}, y_{k}\right)$. Indeed if we have $\psi_{k-1, i}$ already and $\psi_{k, i}$ are proposed, and if we call $\Psi_{k-1}=\sum_{i} \psi_{k-1, i}$, we can break up each proposed function into two pieces

$$
\psi_{k, i}=\psi_{k, i}\left(1_{\left[0, y_{k}\right)}-\Psi_{k-1}\right)+\psi_{k, i} \Psi_{k-1}
$$

and make a new proposed family consisting of the individual pieces. This new family is still admissable and gets a larger value in the supremum part of the definition of $|\alpha|$. So we may assume the $\psi_{k, i}$ come to us already with support either on $\left[0, y_{k-1}\right)$ or on $\left[x_{k-1}, y_{k}\right)$, and then we clearly get a better approximation to the supremum by replacing those $\psi_{k, i}$ supported on [0, y_{k-1}) by the already chosen $\psi_{k-1, i}$.

Having built up $\psi_{k, i}$ as described above we are ready to build the partition of unity. Take $\Psi_{0}=0, \Psi_{n}=1$, and $\Psi_{k}=\sum_{i} \psi_{k, i}$ for $k=1, \ldots, n$, then the relevant partition of unity is given by

$$
\Phi_{k}=\Psi_{k}-\Psi_{k-1}, \quad k=1, \ldots, n
$$

Note for fixed $k=1, \ldots, n$ we have

$$
l\left(\Psi_{k}-\Psi_{k-1}\right)=\sum_{\operatorname{supp}\left(\psi_{k, i}\right) \subset\left[x_{k-1}, y_{k}\right)} l\left(\psi_{k, i}\right)
$$

so that

$$
\left|l\left(\Phi_{k}\right)\right| \leq|\alpha|\left(x_{k}\right)-|\alpha|\left(x_{k-1}\right)+\frac{2 \epsilon}{n+1}
$$

Then since

$$
\left|l(f)-\sum_{i=1}^{n} f\left(x_{i}\right) l\left(\Phi_{i}\right)\right| \leq\|l\| \epsilon
$$

we conclude for $f \geq 0$ that

$$
\begin{aligned}
|l(f)| & \leq \sum_{i=0}^{n-1} f\left(x_{i+1}\right)\left|l\left(\Phi_{i+1}\right)\right|+||l|| \epsilon \\
& \leq \sum_{i=0}^{n-1} f\left(x_{i+1}\right)\left(|\alpha|\left(x_{i+1}\right)-|\alpha|\left(x_{i}\right)\right)+(||l||+2) \epsilon
\end{aligned}
$$

Refining the partition and taking $\epsilon \downarrow 0$ we conclude

$$
|l(f)| \leq|l|(f)
$$

whenever $f \geq 0, f \in C[0,1]$.
Now we know the linear functionals $|l| \pm l$ are positive, hence we may apply the first half of the proof to find $\alpha_{+}, \alpha_{-} \in B V$ with

$$
\begin{aligned}
& \frac{1}{2}(|l|+l)(f)=\int f d \alpha_{+} \\
& \frac{1}{2}(|l|-l)(f)=\int f d \alpha_{-}
\end{aligned}
$$

Finally we have

$$
l(f)=\int f d\left(\alpha_{+}-\alpha_{-}\right), \quad \forall f \in C[0,1]
$$

and we're done.

