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1. The Linear Schrodinger Equation

We begin with the linear Schrodinger equation,

(i∂t +4x)u = 0

for u : Rd × R → C, and with initial data u (x, 0) = φ (x). Taking the Fourier
transform on Rd,

f̂ (ξ) =

∫
Rd
f (x) e−ix·ξ dx,

the equation becomes

i∂tû (ξ, t)− |ξ|2û (ξ, t) = 0.

This has the solution

û (ξ, t) = φ̂ (ξ) e−it|ξ|
2

.

So for φ ∈ S
(
Rd
)

we may write

u (x, t) =
(
eit∆φ

)
(x) =

∫
Rd
φ (x− y)K (y, t) dy

with kernel

K (y, t) = Ct−d/2ei|x|
2/(4t).

Here are some properties of the linear Schrodinger flow:

Proposition 1.1. For initial data φ:

(1) ||eit∆φ||L2(Rd) = ||φ||L2(Rd) for all t ∈ R.

(2) eit∆ ◦ eis∆ = ei(t+s)∆ for all t, s ∈ R.
(3) eit∆ ◦ τx0

= τx0
◦ eit∆ for all t ∈ R, x0 ∈ Rd, where (τx0

f) (x) = f (x− x0).

(4) eit∆ ◦ δr = δr ◦ ei(t/r
2)∆ for all t ∈ R, r ∈ R+, where (δrf) (x) = f (x/r).

Exercise 1.2. (a) Prove these identities.
(b) Is it true that limt→0 e

it∆φ = φ? In what sense and for what kind of functions
φ?

2. The Nonlinear Schrodinger Equation (NLS)

The simplest nonlinearity to introduce is the so-called power nonlinearity. The
equation is now

(i∂t +4x)u = µu|u|p−1

with initial data u (x, 0) = φ (x). Here, µ = ±1 and p > 1. Taking the Fourier
transform and solving the ode results in the Duhamel formula:

u (t) = eit∆φ− i
∫ t

0

ei(t−s)∆N (s) ds

where

N (s) = µu (t) |u (t)|p−1.

This is not an explicit formula for u. But we can approximate u via a perturbative
iteration scheme,

u1 (t) = eit∆φ,

un+1 (t) = eit∆φ − i
∫ t

0

ei(t−s)∆
[
µun (s) |un (s)|p−1

]
ds.
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We can only hope for this scheme to work for short enough time and for small
enough functions. This is to ensure the second term does nothing more than correct
small errors in the initial guess. But sometimes a different approximation scheme
is needed. Then we’d write

i∂tu− u|u|p−1 = −4xu,
and with the anzatz |u| = ct (??) we’d get

u (x, t) = u (x, 0) e−it|u(x)|p−1

.

This would produce an iterative scheme to deal with functions which are large in
short time. But in this lecture we’ll assume we’re working where the first scheme
is convergent.

It will be useful to understand which quantities are conserved under the time
evolution of NLS.

Exercise 2.1. Prove (formally) the conservation of mass and energy for solutions
of the NLS: if u is a “nice” solution on an interval I, then the quantities

M (t) =

∫
Rd
|u (x, t)|2 dx,

E (t) =
1

2

∫
Rd
|4xu (x, t)|2 dx+

µ

p+ 1

∫
Rd
|u (x, t)|p+1 dx

are conserved.

Now assume φ ∈ Hσ
(
Rd
)
. For the iteration scheme to work, we need a space

Xσ = Xσ (I) so that

eit∆φ ∈ Xσ (I) if φ ∈ Hσ

and so that ∫ t

0

ei(t−s)∆
(
f (s) |f (s)|2

)
ds ∈ Xσ (I) if f ∈ Xσ (I) .

Exercise 2.2. Assume d = 3, p = 3. Show the perturbative scheme produces
a solution in Xσ (I) = C (I : Hσ), provided that σ is sufficiently large and |I| is
sufficiently small. Hint: Sobolev embedding.

The perturbative scheme only produces local solutions. To go from local to
global we have to use the conserved quantities. Another useful tool is the Strichartz
estimates:

(1) If (q, r) is an admissible pair, i.e., (q, r) ∈ (2,∞]× [2,∞], 2/q + d/r = d/2,
then

||eit∆φ||LqtLrx .q ||φ||L2 .

(2) If (q, r) , (q, r) are admissible pairs, then∣∣∣∣∫ t

−∞
ei(t−s)∆N (s)

∣∣∣∣
LqtL

r
x
.q,q ||N ||Lq′t Lr′x .

Let’s try to understand what (1) means. Let d = 4, and q = r, then we get

||eit∆φ||L3
x,t
. ||φ||L2 .

This says the L3-norm of eit∆φ is finite for a.e. t, so long as we have φ ∈ L2. So the
forward-time evolution has a smoothing effect. And this also says that the L3-norm
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of eit∆φ has to decay forward in time. In the next section we’ll prove the Strichartz
estimates.

3. Proof of the Strichartz Estimates

First we write the Strichartz estimates in a more conceptual way:

(1) If (q, r) is an admissible pair, i.e., (q, r) ∈ (2,∞]× [2,∞], 2/q + d/r = d/2,
then

||eit∆φ||LqtLrx .q ||φ||L2 .

(2) If (q, r) is an admissible pair, then∣∣∣∣∫ t

−∞
ei(t−s)∆N (s)

∣∣∣∣
L∞t L

2
x∩L

q
tL

r
x
.q ||N ||L1

tL
2
x+Lq

′
t L

r′
x
.

Exercise 3.1. (a) Show that if f : Rd × I → C is a measurable function and
p, q ∈ [1,∞] then

||f ||LptLqx = sup
||g||

L
p′
t L

q′
x

=1

∣∣∫
Rd×I

fg dxdt
∣∣.

(b) Show that if (q, r) , (q, r) are admissible pairs, q ≤ q, then

||f ||LqtLrx ≤ ||f ||LqtLrx∩L∞t L2
x
,

||f ||
Lq
′
t L

r′
x
≥ ||f ||

Lq
′
t L

r′
x +L1

tL
2
x
.

Our goal is to prove the Strichartz estimates. First we recall the concept of
fractional integration.

Exercise 3.2 (Fractional Integration). Prove that

||f ? |y|−γ ||Lq(Rd) ≤ Cp,q||f ||Lp(Rd)

if 0 < γ < d, 1 < p < q <∞, and q−1 = p−1 − (d− γ) /d.

And next, complex interpolation.

Exercise 3.3 (Complex Interpolation). Let S = {z ∈ C : < (z) ∈ [0, 1]} and assume
that Tz : S

(
Rd
)
→ L1

loc

(
Rd
)
, z ∈ S, is an analytic family of operators, i.e., the

map

z 7→
∫
Rd
Tz (f) · g dx, f, g ∈ S

(
Rd
)

is analytic (and bounded) in int (S) and continuous in S. Assume that p0, q0, p1, q1 ∈
[1,∞] and

||Tiy||Lp0→Lq0 ≤M0,

||T1+iy||Lp1→Lq1 ≤M1.

Then, for all θ ∈ [0, 1]

||Tθ||Lpθ→Lqθ ≤M1−θ
0 Mθ

1

where p−1
θ = (1− θ) /p0 + θ/p1, q−1

θ = (1− θ) /q0 + θ/q1.
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Now we prove the first Strichartz estimate. We have the dispersive estimates

||eit∆||L2(Rd)→L2(Rd) . 1,

||eit∆||L1(Rd)→L∞(Rd) . |t|−d/2.
By interpolation,

||eit∆||Lr′ (Rd)→Lr(Rd) . |t|
−d(1/2−1/r).

Now we have the TT ∗ argument. We want

||eit∆φ||LqtLrx .q ||φ||L2 .

This is equivalent to∣∣∫
Rd×R

(
eit∆φ

)
(x) g (x, t) dxdt

∣∣ .q ||φ||L2 ||g||
Lq
′
t L

r′
x
,

which is equivalent to∣∣∣∣∫
Rd×R

e−it|ξ|
2

eix·ξg (x, t) dxdt
∣∣∣∣
L2
ξ

.q ||g||Lq′t Lr′x ,

which is equivalent to∣∣∫
Rd×R

∫
Rd×R

g (x, t) g (y, s)K (x− y, t− s) dxdtdyds
∣∣ .q ||g||2

Lq
′
t L

r′
x

where K is the kernel of the free Schrodinger flow. Note that to use Fubini’s
theorem here we needed absolute integrability. This does not hold in general, but
we can instead consider g to be a simple function, or perhaps in the Schwartz class.
Then we can use a density argument to extend to more general g.

But by the dispersive estimate,∣∣∫
Rd

∫
Rd
g (x, t)h (y, x)K (x− y, t− s) dxdy

∣∣ . G (t)G (s) |t− s|−d(1/2−1/r)

where

G (t) =

[∫
Rd
|g (x, t)|r

′
dx

]1/r′

.

The desired bound now follows from Holder’s inequality and fractional integration.
The admissibility condition will drop out of this as an algebraic condition. And
note that to apply the fractional integration result we need q > 2. The theorem
turns out to be true for q = 2, d ≥ 3, but this is a more difficult (and recent) result
due to Tao.

Exercise 3.4. Prove the remaining Strichartz estimates.

4. Global Well-Posedness of Cubic NLS

In this section we’ll discuss global well-posedness of the cubic nonlinear Schrodinger
equation,

(i∂t +4x)u = u|u|2

with initial data u (x, 0) = φ (x) on R3. Recall the Duhamel formula,

u (t) = eit∆φ− i
∫ t

0

ei(t−s)∆N (s) ds

where
N (t) = u (t) |u (t)|2.
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We’re looking to find a solution via the perturbative iteration scheme,

u1 (t) = eit∆φ,

un+1 (t) = eit∆φ− i
∫ t

0

ei(t−s)∆
(
un (s) |un (s)|2

)
ds.

We need to construct a space in which the un form a Cauchy sequence. Throughout
we’ll use the Strichartz estimates which were proved above. And we also have the
Sobolev imbedding: if 3/s = 3/r − 1, r, s ∈ (1,∞), then

||f ||Ls(R3) . ||f ||Lr(R3) + ||∇f ||Lr(R3).

Now assume φ ∈ H1
(
R3
)

and fix an admissible pair (q, r). Define

X1 (I) =
{
f ∈ C

(
I : H1

(
R3
))

: ||f ||X1(I) := ||f ||L∞t L2
x∩L

q
tL

r
x

+ ||∇f ||L∞t L2
x∩L

q
tL

r
x
<∞

}
.

Exercise 4.1. Prove that X1 (I) is a Banach space.

Lemma 4.2. If φ ∈ H1
(
R3
)

then eit∆φ ∈ X1 (I) and ||eit∆φ||X1(I) ≤ C0||φ||H1 .

Lemma 4.3. If f, g, h ∈ X1 (I) then

F :=

∫ t

0

ei(t−s)∆ (f (s) g (s)h (s)) ds ∈ X1 (I)

and

||F ||X1(I) ≤ C|I|δ||f ||X1(I)||g||X1(I)||h||X1(I).

Now we construct the nonlinear solution. Let un be as given above. Assume
||φ||H1 ≤ A. The two lemmas show that {un}n≥1 is a Cauchy sequence in the
complete metric space

Y (I) :=
{
f ∈ X1 (I) : ||f ||X1(I) ≤ 2C0A

}
if |I| is sufficiently small (depending on A). The first conclusion to draw is that,
assuming φ ∈ H1

(
R3
)
, there is ε = ε (||φ||H1) small and a unique solution u ∈

X1 (−ε, ε) of the equation

u (t) = eit∆φ− i
∫ t

0

ei(t−s)∆
(
u (s) |u (s)|2

)
ds.

Moreover, the mapping φ 7→ u is continuous from H1 → X1 (−ε, ε).

Exercise 4.4. Prove conservation of mass and energy for the solution u constructed
above.

Theorem 4.5 (Global Well-Posedness of Cubic NLS). Assuming that φ ∈ H1
(
R3
)

and I ⊂ R is a bounded interval, there is a unique solution u ∈ X1 (I) of the

equation u (t) = eit∆φ− i
∫ t

0
ei(t−s)∆

(
u (s) |u (s)|2

)
ds. Moreover, the mapping φ 7→

u is continuous from H1 → X1 (−ε, ε).
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5. Behavior of Solutions at Infinity

Our main result thus far was global well-posedness for the cubic nonlinear
Schrodinger equation. Motivated by the Duhamel formula, we proposed a per-
turbative iterative scheme. This led to local existence and uniqueness, and then
global existence and uniqueness.

In this section we’ll try to understand how the solution behaves at t =∞. Recall
that

X1 (I) =
{
f ∈ C

(
I;H1

(
R3
))

: ||f ||X1(I) := ||f ||L∞t L2
x∩L

q
tL

r
x

+ ||∇f ||L∞t L2
x∩L

q
tL

r
x
<∞

}
.

Definition 5.1. We say that the solution u scatters at +∞ if there is u+ ∈ H1
(
R3
)

such that

lim
t→+∞

e−it∆u (t) = u+

in H1. Similarly, we say that the solution u scatters at −∞ if there is u− ∈ H1
(
R3
)

such that

lim
t→−∞

e−it∆u (t) = u−

in H1.

Since eit∆ is an isometry, scattering at +∞ means that u behaves like a solution
of the linear equation cubic

(i∂t +4) v = 0

with initial data v (0) = u+, and similarly for scattering at −∞. We’d like to
demonstrate scattering for solutions of the cubic NLS, i.e., that

u+ = φ− i lim
t→+∞

∫ t

0

e−is∆
(
u (s) |u (s)|2

)
ds.

Theorem 5.2. For every asymptotic state u+ ∈ H1 there is a unique H1 solution u
that scatters to u+. Moreover, the wave operater Ω+ : H1 → H1, Ω+ (u+) = u (0)
is well-defined and continuous.

Proof. Step 1. Evolution from t = +∞ to t = t0: solve

u (t) = eit∆u+ + i

∫ ∞
t

ei(t−s)∆
(
u (s) |u (s)|2

)
ds

using a fixed point argument in the metric spcae X1 ∩Bδ
(
Y 1
)

with norm

||f ||Y 1 := ||f ||L5
x,t

+ ||f ||LqtLrx + ||∇f ||LqtLrx .

Step 2. Evolve from t = t0 to t = 0: solve

u (t) = ei(t−t0)∆u (t0)− i
∫ t

t0

ei(t−s)∆
(
u (s) |u (s)|2

)
ds

as in the global well-posedness theory. �

Is the wave operator surjective? This is called asymptotic completeness. The an-
swer is “yes” in the defocusing case (µ = 1) and “no” in the focusing case (µ = −1).

Exercise 5.3. Let

Ma (t) = 2=
∫
R3

∂ja (x) · u (x, t)∂ju (x, t) dx.
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Show that

∂tMa (t) = 4<
∫
R3

∂j∂ka · ∂ju∂ku dx−
∫
R3

42a · |u|2 dx+

∫
R3

4a · |u|4 dx

in the defocusing case.

Exercise 5.4 (Spacetime bound implies asymptotic completeness). Prove scatter-
ing assuming that ||u||L4

x,t
. 1.

Exercise 5.5. In the defocusing case, prove the spacetime bound ||u||L4
x,t
. 1.

6. Analysis of the Periodic Case

In this section we’ll discuss some results for periodic NLS. We begin with a
review of Fourier analysis on the torus.

6.1. Fourier Analysis on Td. First we recall Fourier analysis on Td = [R/ (2πZ)]
d
.

For f ∈ L1
(
Td
)

we set

Ff (n) = f̂ (n) =

∫
Td
f (x) e−in·x dx

with n ∈ Zd.

Theorem 6.1 (Fourier Inversion Formula). If f ∈ L1
(
Td
)

and f̂ ∈ L1
(
Zd
)
, then

f (x) = (2π)
−d ∑

n∈Zd
f̂ (n) ein·x

for x ∈ Zd.

Theorem 6.2 (Plancherel’s Theorem). The operator (2π)
−d/2 F defines an isom-

etry L2
(
Td
)
→ L2

(
Zd
)
.

Exercise 6.3. Prove the Fourier inversion formula, the Plancerel theorem, and
three more interesting identities related to the Fourier transform on Td. (Think of
products, convolutions, derivatives, action of isometries, etc.)

Exercise 6.4. (a) Assume 1 ≤ p ≤ q ≤ ∞. Prove that

Lp
(
Zd
)
↪→ Lq

(
Zd
)
,

Lq
(
Td
)
↪→ Lp

(
Td
)
.

(b) Prove the Sobolev imbedding inequality: if d/q = d/p − 1 with p, q ∈ (1,∞)
then

||f ||Lq(Td) . ||f ||Lp(Td) + ||∇f ||Lp(Td).

Now we consider the Littlewood-Paley projections. Assume that η : Rd → [0, 1]
is a smooth function with η (ξ) = 1 if |ξ| ≤ 1 and η (ξ) = 0 if |ξ| ≥ 2. For
k = 0, 1, . . . , define

η≤k (ξ) = η

(
ξ

2k

)
,

ηk (ξ) = η≤k (ξ)− η≤k−1 (ξ) ,
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and

P≤kf = F−1
[
η≤k (ξ) · f̂ (ξ)

]
,

Pk = P≤k − P≤k−1,

where, by definition, η≤−1 = 0 and P≤−1 = 0. So

P0 + P1 + · · ·+ Pk = P≤k

P0 + P1 + . . . = id .

Exercise 6.5. (a) Prove the Poisson summation formula: if f, f̂ ∈ L1
(
Rd
)

then∑
n∈Zd

f (n) =
∑
m∈Zd

f̂ (m) .

(b) Prove that for all k ≥ 0 and p ∈ [1,∞],

||P≤kf ||Lp(Td) . ||f ||Lp(Td).

6.2. The Defocusing Periodic NLS. We’ll use these tools to understand the
defocusing periodic NLS:

(i∂t +4x)u = u|u|p−1

with initial data u (x, 0) = φ (x) and where µ = ±1, p > 1. The quantities

M (t) =

∫
Td
|u (x, t)|2 dx,

E (t) =
1

2

∫
Td
|∇xu (x, t)|2 dx+

1

p+ 1

∫
Td
|u (x, t)|p+1 dx

are conserved. Again we set up a perturbative iteration scheme:

u1 (t) = eit∆φ,

un+1 (t) = eit∆φ− i
∫ t

0

ei(t−s)∆
(
µun (s) |un (s)|p−1

)
ds.

As in the Euclidean case, we have local well-posedness in Hσ for large enough σ (via
Sobolev embedding). Aiming towards global well-posedness, we’d like to prove local
well-posedness in H1

(
Td
)
. But this is not so easy – it depends on the Strichartz

estimates.
Recall the Strichartz estimates on Euclidean space:

||P≤keit∆f ||L(2d+4)/d
x,t

. ||f ||L2(Rd),

||P≤keit∆f ||L∞x,t . 2kd/2||f ||L2(Rd).

And by interpolation,

||P≤keit∆f ||Lpx,t . 2k[d/2−(d+2)/p]||f ||L2(Rd)

for p ∈ [(2d+ 4) /d,∞].

Theorem 6.6 (Periodic Strichartz Estimates). On Td,

||P≤keit∆f ||L4
x,t

(
Td × T

)
. Ad (k) ||f ||L2(Rd),
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where

A2 (k) = Cε2
kε,

A3 (k) = Cε2
k(1/4+ε),

A4 (k) = Cε2
k(1/2+ε),

Ad (k) = C2k(d−2)/4, d ≥ 5.

The L∞ estimate still holds,

||P≤keit∆f ||L∞x,t(Td×T) . 2kd/2||f ||L2(Td).

The key obstruction to global well-posedness is that the Euclidean dispersive
bound ∣∣∣∣P≤keit∆∣∣∣∣L1(Rd)→L∞(Rd)

.

[
2k

1 + 2k|t|1/2

]d
fails in the periodic case.

Exercise 6.7. Prove the Λ (4) bound for the squares∣∣∣∣ ∑
|n|≤N

ane
in2x

∣∣∣∣
L4(T1)

.ε N
ε
∣∣∣∣ ∑
|n|≤N

ane
in2x

∣∣∣∣
L2(T1)

for any ε > 0 and N ≥ 1.

Exercise 6.8. Let

Kk (x, t) =
∑
n∈Zd

e−i|n|
2teix·nη≤k (n)

denote the kernel of P≤ke
it∆, x ∈ Td, t ∈ R. Prove that

|Kk (x, t)| .

[
2k

√
q
(
1 + 2k|t/ (2π)− a/q|1/2

)]d
if t/ (2π) = a/q + β, (a, q) = 1, q ∈

{
1, . . . , 2k

}
, |β| ≤

(
2kq
)−1

.

6.3. Global Well-Posedness on T. For the remainder of the course we’ll restrict
our attention to the defocusing periodic (cubic) NLS on T = T1:

(i∂t +4x)u = u|u|2

with initial data u (x, 0) = φ (x). Again, the quantities

M (t) =

∫
T
|u (x, t)|2 dx

E (t) =
1

2

∫
T
|∇xu (x, t)|2 dx+

1

4

∫
T
|u (x, t)|4 dx

are conserved.

Theorem 6.9. The initial value problem above is globally well-posed for small data
in L2 (T).

Exercise 6.10. Use Sobolev imbedding to prove that the initial-value problem is
well-posed in H1 (T)
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Again we have a perturbative iteration scheme:

u1 (t) = eit∆φ,

un+1 (t) = eit∆φ− i
∫ t

0

ei(t−s)∆
[
un (s) |un (s)|2

]
ds.

Step 1: The homogenous Strichartz estimate

||eit∆φ||L4(T×T) . ||φ||L2(T).

Step 2: The inhomogeneous Strichartz estimate∣∣∣∣∫ t

0

ei(t−s)∆ (f (s)) ds
∣∣∣∣
L∞t L

2
x(T×I) . ||f ||L4/3(T×I).

Exercise 6.11. Prove the Strichartz estimate with loss∣∣∣∣P≤keit∆φ∣∣∣∣L6(T×T)
.ε 2εk||φ||L2(T).

State and prove the analogue of the inhomogeneous Strichartz estimate above.

Step 3: The inhomogeneous Strichartz estimate∣∣∣∣∫ t

0

ei(t−s)∆ (f (s)) ds
∣∣∣∣
L4(T×I) . ||f ||L4/3(T×I)

for any f ∈ L4/3 (T× I), 0 ∈ I.
Step 4: Prove that {un}n≥1 is a Cauchy sequence in the space

X (I) = C
(
I : L2 (T)

)
∩ L4 (T× I) .

Then use the L2 conservation law to extend the solution to T× R. Conclude that
for any φ ∈ L2 with ||φ||L2 ≤ ε0 there is a unique solution

u ∈ C
(
R : L2 (T)

)
∩ L4

loc (T× R)

of the equation

u (t) = eit∆φ− i
∫ t

0

ei(t−s)∆
(
u (s) |u (s)|2

)
ds.

The mapping φ 7→ u is continuous from L2 (T) to X (I) for any bounded interval
I.
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