
Numerical Methods I

Olof Widlund

Transcribed by Ian Tobasco

Abstract. This is part one of a two semester course on numerical methods.

The course was offered in Fall 2011 at the Courant Institute for Mathemat-
ical Sciences, a division of New York University. The primary text for the

course will be Numerical Linear Algebra by L. Trefethen and D. Bau. Analy-

sis of Numerical Methods by Isaacson and Keller may be helpful when we dis-
cuss orthogonal polynomials and Gaussian quadrature. There will be regular

homeworks. The course website is http://www.cs.nyu.edu/courses/fall11/

CSCI-GA.2420-001/index.html.

http://www.cs.nyu.edu/courses/fall11/CSCI-GA.2420-001/index.html
http://www.cs.nyu.edu/courses/fall11/CSCI-GA.2420-001/index.html

Contents

Chapter 1. Singular Value Decomposition and QR Factorization 5
1. Orthogonality 5
2. The Singular Value Decomposition 6
3. Projection Operators 9
4. The QR Factorization 10
5. Least-Squares 13

Chapter 2. Interpolation by Polynomials 17
1. Newton Interpolation 17
2. Hermite Polynomials 19
3. Interpolation Error 21
4. Piecewise Interpolation 22
5. Quadrature by Polynomial Interpolation 24
6. Orthogonal Polynomials 28
7. Gaussian Quadrature 30

Chapter 3. Solving Linear Equations 35

3

CHAPTER 1

Singular Value Decomposition and QR
Factorization

Lecture 1, 9/8/11
What is this course really about? It’s mainly about orthogonality and its uses.

1. Orthogonality

First, some notation. We consider Rn to be the linear space of column vectors

x =

 x1

...
xn

. We’ll denote the transpose of x as x∗ = (x1, . . . , xn). The (canonical)

inner product will be

(x, y) = x∗y =
n∑
k=1

xkyk,

and as usual the (Euclidean) norm of x is

||x||`2 =
√
x∗x.

Recall that vectors v1, . . . , vk ∈ Rn are orthogonal if v∗j vk = 0 for j 6= k, and that
a vector v is normal if ||v|| = 1.

Why are orthogonal vectors important to scientific computing? Computers
cannot do exact math. But we’ll see that certain algorithms do not amplify the
round-off errors so much: these methods will be known as “well-conditioned” and
“stable”. As it will turn out, orthogonality is key to produce well-conditioned
methods. Orthogonality is also related to variational principles. A variational
problem is one in which the answer is a maximizer/minimizer.

Proposition 1.1. Suppose x 6= 0, then d
dε ||x+ εy||

∣∣
ε=0

= 0 iff x∗y = 0.

Proof. Set f (ε) = ||x+ εy||2. Then

f (ε) = (x+ εy)∗ (x+ εy)

= x∗x+ 2εx∗y + ε2y∗y,

and so
f ′ (0) = 2x∗y.

Now
g (ε) =

√
f (ε) = ||x+ εy||,

so

g′ (0) =
1
2

1
g (0)

f ′ (0) =
x∗y

||x||
.

5

6 1. SINGULAR VALUE DECOMPOSITION AND QR FACTORIZATION

Hence
d

dε
||x+ εy||

∣∣∣∣
ε=0

=
x∗y

||x||
which gives the result. �

2. The Singular Value Decomposition

In this section we’ll describe the SVD of a matrix. (In finance this is known as
“principal component analysis”, or PCA for short.) Let A : Rn → Rm be a m× n
matrix. The SVD looks for the “important” parts of A. Here is an algorithm for
computing the SVD of A.

Step 1. Compute σ1 = max||v||=1||Av|| = ||A|| and find v1 such that ||v1|| = 1
and ||Av1|| = σ1. (σ1 represents the biggest “part” of A.) Also define u1 via

Av1 = σ1u1

with ||u1|| = 1.

Proposition 2.1. If v∗v1 = 0 and σ1 6= 0, then (Av)∗ u1 = 0.

Proof. By contradiction, suppose v∗v1 = 0 but w = Av has u∗1w 6= 0. Then
v1 was not optimal. To see this, set

v (ε) =
v1 + εv

||v1 + εv||
and note that ||v (ε)|| = 1 for all ε. By hypothesis,

d

dε
||v1 + εv||

∣∣∣∣
ε=0

= 0

and thus
d

dε

1
||v1 + εv||

∣∣∣∣
ε=0

= 0

by the chain rule. Now let

w (ε) = Av (ε)

=
1

||v1 + εv||
(Av1 + εAv)

=
1

||v1 + εv||
(σ1u1 + εw)

where w = Av. Now observe that
d

dε
||w (ε)||

∣∣∣∣
ε=0

= 0

if v1 is optimal. However,

||w (ε)||2 =
1

||v1 + εv||2
(
σ2

1u
∗
1u1 + 2εσ1u

∗
1w + ε2w∗w

)
and so

d

dε
||w (ε)||2

∣∣∣∣
ε=0

=
2σ1u

∗
1w

||v1 + εv||2
.

Thus
d

dε
||w (ε)||2

∣∣∣∣
ε=0

= 0

only if u∗1w = 0 (or σ1 = 0, but we’ve assumed otherwise). �

2. THE SINGULAR VALUE DECOMPOSITION 7

Exercise 2.2. Find a non-calculus proof.

Step 2. Find the second most important vector. That is, compute

σ2 = max
||v||=1
v∗v1=0

||Av||.

Note that σ2 ≤ σ1. If v2 is a maximizer, then set u2 with ||u2|| = 1 via

Av2 = σ2u2.

Note that ||v1|| = ||v2|| = 1 by choice, and the proposition gives that u∗1u2 = 0 as
v∗1v2 = 0.

Step k + 1. Suppose we have orthonormal v1, . . . , vk and u1, . . . , uk along with
σ1 ≥ σ2 ≥ · · · ≥ σk > 0. Then compute

σk+1 = max
||v||=1

v∗vj=0, j=1,...,k

||Av||

and if vk is a maximizer find uk with ||uk|| = 1 via

Avk = σkuk.

Another way of writing this is as follows. Define Sk = span {v1, . . . , vk}, then

σk+1 = max
||v||=1
v⊥Sk

||Av||.

Again we have a proposition telling us how to proceed.

Proposition 2.3. Suppose Avk+1 = σk+1uk+1 with ||uk+1|| = 1 as in the setup
above. Then u∗k+1uj = 0 for j = 1, . . . , k.

Proof sketch. If u∗k+1uj 6= 0 then the vj were not optimal. To see this, set

vj (ε) =
vj + εvk+1

||vj + εvk+1||
for j = 1, . . . , k, and observe

d

dε
||Avj (ε)||

∣∣∣∣
ε=0

6= 0

if u∗juk+1 6= 0. �

Note. It could happen that Av = 0 if v ⊥ Sk. Then take vk+1, . . . , vn to be
arbitrary orthonormal vectors which are orthogonal to Sk, and set σj = 0 with
j ≥ k.

We’ve proved the following theorem.

Theorem 2.4 (SVD). Let A be a m× n matrix. Then there are orthonormal
vectors v1, . . . , vn and u1, . . . , un along with numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 so
that

Avk = σkuk.

Exercise 2.5. Consider the integral transformation

f (x) =
∫ L

0

K (x, y) g (y) dy

8 1. SINGULAR VALUE DECOMPOSITION AND QR FACTORIZATION

with kernel K (x, y) = sin
(
x2y
)
. Set ∆x = L/n and xk = k∆x+ ∆x/2. Define an

n× n matrix with components Akj = ∆x ·K
(
x2
kyj
)
. Compute its singular values,

and in particular compute log10 (σj). Observe the rate at which σj → 0.

The theorem can be interpreted as a statement about matrix decomposition.

Theorem 2.6 (SVD Decomposition). Given a matrix A there are orthogonal
matrices V and U along with a diagonal matrix Σ such that

AV = UΣ,

i.e. such that
A = UΣV ∗.

Proof. Find uk, vk, σk as in the previous theorem. If m > n then choose
un+1, . . . , um to be orthonormal and orthogonal to span {u1, . . . , un}. Set

V =

 | |
v1 · · · vn
| |

 ,

U =

 | | | |
u1 · · · un un+1 · · · um
| | | |

 ,

and

Σ =

σ1

. . .
σn

 .

The proof is similar for m < n. �

What are the uses of SVD? Suppose

A = UΣV ∗,

then
A∗ = V Σ∗U∗

and hence

A∗A = V Σ∗ΣV ∗

AA∗ = UΣΣ∗U∗.

So V contains eigenvectors of A∗A and U contains eigenvectors of AA∗. And σ2
k

are the non-zero eigenvalues.

Exercise 2.7. Show that the non-zero eigenvectors of A∗A and AA∗ are the
same.

Here is a second application: The low-rank approximation. Recall rank (A) =
dim (R (A)). If A is rank 1, then A = xy∗ for some x ∈ Rm and y ∈ Rn. If A is

3. PROJECTION OPERATORS 9

rank k, then A =
∑k
j=1 xjy

∗
j . The “best” rank k approximation to A is the matrix∑k

j=1 σjujv
∗
j . That is, if B has rank k, then

||A−B|| ≥ ||A−
k∑
j=1

σjujv
∗
j ||.

There is a proof in the text.
Low-rank approximation allows for matrix compression. Indeed,

||A−
k∑
j=1

σjujv
∗
j || = σk+1,

so when the σk → 0 quickly, we can approximate the action of A with fewer and
fewer numbers. Fewer numbers means fewer multiplies to compute Ax to a high
degree of accuracy.

Note. The singular values and the eigenvalues of a matrix are very different.
Indeed λk

(
A2
)

= (λk (A))2 but σk
(
A2
)
6= (σk (A))2. To see how different they are,

consider A =
(

0 1
0 0

)
. It’s clear from this example that the singular values do

not represent the dynamics (although the eigenvalues do).
Lecture 2, 9/15/11

3. Projection Operators

Definition 3.1. An m×m matrix P is a projection if P 2 = P .

For an arbitrary vector v we can write

v = Pv + (I − P) v.

This is a unique decomposition. Indeed, the subspaces R (P) and R (I − P) are
complementary, in that R (P) ∩ R (I − P) = {0}. (Suppose Px = (I − P) y, then
applying P gives Px = 0 and hence the result.) So Cn = R (P)⊕R (I − P). Note
also that I − P is also a projection, for

(I − P)2 = I − 2P + P 2 = I − P
by definition. So we have decomposed the entire space into the direct sum of the
rangespaces of (complementary) projections.

There is an important class of projections for which R (P) ⊥ R (I − P). These
are known as orthogonal projections.

Proposition 3.2. A projection P is orthogonal iff P = P ∗.

Proof. Observe that

((I − P) v)∗ Pv = v∗ (I − P ∗)Pv,
so if P ∗ = P then P is an orthogonal projection.

For the other direction, recall that if we have S1 ⊕ S2 = Cn then there ex-
ist orthonormal bases {q1, . . . , qm} and {qm+1, . . . , qn} for S1 and S2. Now take
R (P) = S1 and R (I − P) = S2. Write v =

∑n
i=1 (q∗i v) qi and apply P to get

Pv =
m∑
i=1

(q∗i v) qi =
m∑
i=1

qiq
∗
i v.

This shows P =
∑m
i=1 qiq

∗
i and hence P = P ∗. �

10 1. SINGULAR VALUE DECOMPOSITION AND QR FACTORIZATION

We can build an orthogonal projector P onto the columns of a given matrix.
Suppose A is an n ×m with full rank, and suppose n > m. Given a vector v, we
want (I − P) v ⊥ R (A). Call Pv = Ax for some x, then this says v −Ax ⊥ R (A).
Thus

A∗ (v −Ax) = 0

or just

A∗v = A∗Ax.

Now if

x∗A∗Ax = 0,

then

||Ax||2 = 0

and hence x = 0. So A∗A is invertible, and hence

x = (A∗A)−1
A∗v.

So what should Pv be? Applying A to both side we get

Pv = A (A∗A)−1
A∗v.

4. The QR Factorization

Suppose A is an m× n matrix. We look for a factorization

A = QR

with unitary Q and upper-triangular R. Such a factorization is called the QR
factorization for A. Why should we care about QR? Suppose A is square, and that
we want to solve the system

Ax = b.

Given the QR, we can write

QRx = b

=⇒ Rx = Q∗b

which is a triangular system of equations. For example, consider a 2× 2 triangular
system of equations (

r11 r12

0 r22

)(
x1

x2

)
=
(
c1
c2

)
.

Then

x2 =
1
r22

c2

x1 =
1
r11

(c1 − r12x2) .

This process generalizes immediately to the n × n case. And the work to solve a
triangular system is exactly proportional to the number of non-zero entries.

4. THE QR FACTORIZATION 11

4.1. Gram-Schmidt. Let’s do a computation. Suppose q1, q2 are orthogonal
unit vectors. Then we can write a projection I − q1q

∗
1 − q2q

∗
2 which removes the

components in the q1- and q2-directions. Now

I − q1q
∗
1 − q2q

∗
2 = (I − q2q

∗
2) (I − q1q

∗
1) .(4.1)

This observation gives us two ways in which to compute the QR of a matrix, the
first of which is Gram-Schmidt. Suppose A is full rank and n×m. Let the vectors
a1, . . . , am be the columns of A. The Gram-Schmidt process from basic linear
algebra is

(1) Set q1 = a1/||a1|| and define r11 so that a1 = r11q1.
(2) Set r12 = q∗1a2 and r22 = q∗2a2. Set a2 = r12q1 + r22q2.
(3) Continue.

So we arrive at the decomposition | |
a1 · · · am
| |

 =

 | |
q1 · · · qm
| |

r11 r12 · · · r1m

r22 · · · r2m

. . .
...

rmm

 .

Call

Q̂ =

 | |
q1 · · · qm
| |

and

R̂ =

r11 r12 · · · r1m

r22 · · · r2m

. . .
...

rmm

 ,

then A = Q̂R̂ is called the reduced QR decomposition of A. Note that Q̂ may not be
unitary, as we could have m < n. But pick-up qm+1, . . . , qn which are orthogonal
to q1, . . . , qm and of unit norm. Then define the n× n matrix

Q =

Q̂ | |
qm+1 · · · qn
| |

and the n×m matrix

R =
(
R̂
0

)
,

then A = QR is the full QR decomposition.
As it turns out, the algorithm prescribed above is numerically unstable. In-

stead, consider the following procedure, motivated by the second equality in equa-
tion 4.1:

(1) Set q1 = a1/||a1||.
(2) Normalize (I − q1q

∗
1) a2 to obtain q2.

(3) Normalize (I − q2q
∗
2) (I − q1q

∗
1) a2 to obtain q3.

(4) Continue.
This algorithm generates the same decomposition, but as it will turn out, it is
numerically stable. We’ll see why later.

12 1. SINGULAR VALUE DECOMPOSITION AND QR FACTORIZATION

4.2. Householder Transformations. There is a third way to find the QR
factorization, via “Householder transformations”. Suppose A is an m × n matrix
with m ≥ n. The idea is to produce unitary matrices Qi such that Qn · · ·Q1A is
upper triangular. How will we acheive this? Fix a vector v and consider the matrix
I − 2 vv

∗

v∗v . This is not a projector, but observe(
I − 2

vv∗

v∗v

)2

= I − 2
vv∗

v∗v
− 2

vv∗

v∗v
+ 4

vv∗vv∗

(v∗v)2 = I,

so it is unitary. Our goal is QR. So we should choose v so that

(
I − 2

vv∗

v∗v

)
a1 =

±||a1||

0
...
0

 .

Since I − vv∗

v∗v is a projector, it’s easy to see that I − 2 vv
∗

v∗v reflects a1 in the plane
perpendicular to v (think of it geometrically). So we define Q1 to be the unitary
matrix I − 2 v1v

∗
1

v∗1v1
with

v1 =

±||a1|| − a1

−a21

−a31

...
−am1

 =

±||a1||

0
...
0

−

a11

a21

...
am1

 .

We have yet to say how to choose the sign: it is best numerically to choose +||a1||
if a11 < 0 and −||a1|| if a11 > 0. (Subtracting two small numbers is numerically
unstable.)

So now we have

Q1A =

∗
0 new
... variables
0

 .

We want

Q2Q1A =

∗ ∗
0 ∗
... 0 | | |
...

...
0 0

 ,

so we set

Q2 =

1 0 · · · 0
0
... I − 2 v2v

∗
2

v∗2v2

0

for appropriate v2 ∈ Cn−1. And so on. After producing all the Qi we have

Qn · · ·Q1A = R

5. LEAST-SQUARES 13

and hence
A = Q∗1 · · ·Q∗nR.

Finally, consider solving Ax = b for x. We have Rx = Q∗b so we only need to
compute Q∗b. We could first compute Q∗ = Qn · · ·Q1 and then compute Q∗b. Will
this save space on a computer? In fact the matrix-matrix multiplies required here
will waste space. Instead, we should compute Q1b then Q2 (Q1b) then Q3 (Q2 (Q1b))
and so on. This step-by-step matrix-vector multiplication is much more efficient.

5. Least-Squares

We can apply the methods of this chapter to the age-old least-squares problem.
Suppose we want to solve

Ax = b

with A an m×n matrix, m > n. From linear algebra, we know the best “solution”
x will satisfy

A∗ (Ax− b) = 0,

i.e.
A∗Ax = A∗b.

If A is of full rank, then
x = (A∗A)−1

A∗b.

Is there a more computationally efficient way to find x? Lecture 3, 9/27/11
One way is to use QR. We saw three ways to compute the QR decomposition

of a matrix A. The third method involved the Housholder transformation I−2 vv
∗

v∗v ,
which reflects perpendicular to v. The first step was to set x = A1 and v =
sgn (x) ||x||e1 − x, and then apply I − 2 vv

∗

v∗v to A. Why did we choose to write
sgn (x) in the definition of v? This prevents the possibility of subtracting two close
numbers, which (as we’ll see) would introduce a large amount of round-off error.
To compute QR we also need to compute ||x|| =

√∑
x2
i . Is it possible to do this

accurately? Can we even compute
√
α accurately? Below, we discuss these issues;

then, we’ll solve least-squares.

5.1. Introduction to Error and Stability. Computation introduces errors,
and an important measure of an algorithm is the amount of relative error it intro-
duces. Why are we interested in relative error? It gives us an idea of the number
of reliable digits. A number is represented in binary form on a computer, in a so-
called floating point system. For example, a number in the IEEE double format is a
sequence ± a1 . . . a11 b1 . . . b52 where each entry is a one or zero. (See the handout
for details.) Now suppose two numbers are stored in a given floating point system.
All of the usual operations +,−, ·,÷,√ can be performed on these numbers, but
the result may not be in the system. Of course, if the result is contained in the
system then it is stored as such; otherwise, the computer chooses one of the closest
numbers in the system to represent the result. Another way of saying this is that,
in floating point, all the usual operations round to the last digit. We need a way
to analyze the errors which are inherent to such a setup.

If x is a number, we denote the floating point representation of x as

(x)FL = (x) (1 + ε)

14 1. SINGULAR VALUE DECOMPOSITION AND QR FACTORIZATION

where |ε| ∼ 10−16. So the operation + has as its floating point analogue the relation

(x+ y)FL = (x+ y) (1 + ε) .

This carries over immediately to the rest of the usual operations. If ε = 0 in
this representation, then x + y is in the floating point system. If ε 6= 0, then the
representation is not exact. This is exactly what leads to non-zero relative error:
the relative error introduced by the operation of addition is the quantity

relative error =
(x+ y)FL − (x+ y)

(x+ y)
= ε.

What if we try to add three numbers? The relative error introduced would
then be

relative error =
((x+ y) (1 + ε1) + z) (1 + ε2)− (x+ y + z)

x+ y + z

=
(x+ y) ε1 + zε2 + (x+ y) ε1ε2

x+ y + z

≈ (x+ y) ε1 + zε2
x+ y + z

since ε1ε2 will be small. Now observe that if we do not know the signs of x, y, z,
then we cannot produce a bound on the error. But if x, y, z all share the same sign,
the error will be at most ε1 + ε2 + ε1ε2.

What about a general function f? Even if x+ ∆x is a representation of x with
small error ∆x, f (x+ ∆x) may have large error relative to the expected result
f (x). The amount by which f magnifies the relative error in x is

error magnification =

(
f(x+∆x)−f(x)

f(x)

)
(

∆x
x

)
≈ f ′ (x) ·∆x

f (x) ·∆x
· x

=
f ′ (x)
f (x)

· x.

The smaller this magnification is, the better the resulting computation will be. If
the error magnification associated with applying f is small, we say f is numerically
stable.

Examples 5.1.
(1) f (x) =

√
x has f ′(x)

f(x) x = 1
2 which is good. So

√
x preserves relative errors

(it does not magnify them), and hence is stable.
(2) Similarly, ||x||2 =

√∑
x2
i is stable.

(3) f (x) = ex has f ′(x)
f(x) x = x which is not good for large x.

(4) f (x) = 1 − x has f ′(x)
f(x) x = −x

1−x → ∞ as x ↗ 1. This really shows that
subtraction on a computer is unstable!

5.2. Solution of Least-Squares. Suppose A is a full rank matrix. The prob-
lem is to solve

Ax = b

5. LEAST-SQUARES 15

as best as we can. If b ∈ R (A) this is solvable exactly; but what if b /∈ R (A)? Then
the problem is to find x which minimizes ||Ax − b||22. Such an x is as close as we
can get (in ||·||2) to a solution of Ax = b.

Here is a first attempt at a solution method (the normal equations). Observe
that x is a minimizer iff

A∗ (Ax− b) = 0
since then Ax − b will be perpendicular to the column space of A. Thus the
minimizer is

x = (A∗A)−1
A∗b,

i.e. the unique solution to
A∗Ax = A∗b.

The advantage of this approach from a computing standpoint is that A∗A is a
small matrix in general. However, computing with A∗A can be problematic due to
round-off error. That is, even though A has full rank, the floating point version of
A∗A can be more singular.

There are other options, the most standard of which is via the QR-factorization.
Let A be a m × n matrix with m > n, and suppose A has full rank. Then write
A = QR where

R =
(
R̂
0

)
with R̂ a non-singular n× n matrix (A is of full rank). Then

||QRx− b||2 = ||Rx−Q∗b||2,
and if we write

Q∗b =
(
c
ĉ

)
with c ∈ Rn and ĉ ∈ Rm−n, then the minimizer is exactly the solution of

R̂x = c,

an upper triangular (read easily solvable) system of equations. We also get that the
minimum error is ||Rx−Q∗b||2 = ||ĉ||2. A clear advantage of this solution method
is that it does not require computation of A∗A.

A second option is via the SVD-factorization. Then we have A = UΛV ∗, and

||Ax− b||2 = ||U∗ (UΛV ∗x− b)||
= ||ΛV ∗x− U∗b||2
= ||Λy − U∗b||2

once we call y = V ∗x. Now if again

U∗b =
(
c
ĉ

)
with c ∈ Rn and ĉ ∈ Rm−n, the minimizing y is the solution of

Λy = c

which is trivial to solve, and then the minimizing x is exactly

x = V y.

The SVD often offers a fairly stable way to solve problems numerically.

16 1. SINGULAR VALUE DECOMPOSITION AND QR FACTORIZATION

5.3. Data Fitting. Suppose we have data (xi, yi) with i = 1, . . . ,m. The
problem is to find k, l so that y = kx + l best approximates the data. More
generally, the problem is to find a0, a1, . . . , an so that y = a0 + a1x + · · · + anx

n

best approximates the data. If there are more measurements than unknowns, an
exact fit is most likely impossible. But consider the system of equations

a0 + a1x1 + · · ·+ anx
n
1 = y1

...
a0 + a1xm + · · ·+ anx

n
m = ym

.

This can be written in matrix-vector form as

Ax = y

with

A =

1 x1 · · · xn1
1 x2 · · · xn2
...
1 xm · · · xnm

 ,

x =

a0

a1

...
an

 ,

and

y =

y1

y2

...
ym

 ,

Although A may not be invertible, it will be full-rank if xi 6= xj for i 6= j. So the
methods developed above will work to solve for the coefficients a0, . . . , an which
give the best fit of the data.

(??) Here is a related problem. Suppose we want to solve Ax = b but N (A) is
non-trivial. If A is of full-rank, then we can solve

AA∗y = b

exactly. Then the general solution to Ax = b will be of the form

x = A∗y + z

for some z ∈ N (A). And since R (A∗) ⊥ N (A) we see that A−1 ({b}) = R (A∗)⊕
N (A).

CHAPTER 2

Interpolation by Polynomials

An important observation in the development of numerical techniques is that
many functions can be well-approximated by polynomials. The first step in this
direction is polynomial interpolation. Given distinct points x0, x1 . . . , xn and values
y0, y1, . . . , yn, the problem is to identify an nth order polynomial pn (x) = a0+a1x+
· · ·+ anx

n which interpolates, i.e. which has pn (xi) = yi for i = 0, . . . , n. This can
be posed as a clssical matrix problem: find a0, . . . , an which satisfy

1 x0 · · · xn0
...
...
1 xn · · · xnn

a0

...

...
an

 =

y0

...

...
yn

 .

Note that the matrix on the left is a special type of matrix known as a “Vander-
monde matrix”.

How can we show there is a solution? One way is to look at the Vandermonde
determinant. Or we can solve it directly by writing

pn (x) =
n+1∑
i=0

yili (x)

with li (xj) = δij . The lis here are the Lagrange polynomials,

li (x) =
Πk 6=i (x− xk)
Πk 6=i (xi − xk)

.

This method indirectly shows the invertibility of the Vandermonde matrix.
Thus there exists a solution. How should be find it numerically? We could try

to invert the Vandermonde matrix, but this can be painful and often costs o
(
n3
)

time. Also, suppose we were to compute the interpolating a0, . . . , an corresponding
to data (xi, yi)i=0,...,n. If we add even a single data point, we would have to find
all of the ais over again. Can we solve this problem in a way which allows us to
add additional data?

1. Newton Interpolation

Polynomials can always be rewritten around an arbitrary center point

pn (x) = a1
0 + a1

1 (x− c) + · · ·+ a1
n (x− c)n .

17

18 2. INTERPOLATION BY POLYNOMIALS

This is just a shifted power series for pn, but it is good to compute with when |x−c|
is small. In general, the Newton form of a polynomial is

pn (x) = a11
0 + a11

1 (x− c1) + a11
2 (x− c1) (x− c2) + · · ·+ a11

n (x− c1) · · · (x− cn)

= a11
0 + (x− c1)

(
a11

1 + (x− c2)
(
a11

2 + a11
3 (x− c3) + . . .

))
.

This last line is the skeleton for fast polynomial evaluation. In this respect, the
Newton form is superior to the Lagrange form of a polynomial. As we’ll see next,
the Newton form is also superior when it comes to interpolation.

Suppose we are given data (xi, fi)i=0,...,n and we want to find coefficients
A0, A1, . . . , An so that

pn (x) = A0 +A1 (x− x0) +A2 (x− x0) (x− x1) + · · ·+An (x− x0) · · · (x− xn−1)

interpolates. Plugging in x0 into the relation above yields A0 = f0; plugging in x1

yields A1 = f1−f0
x1−x0

. In general we’ll have

(1.1) Ak = f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
,

and so we call Ak = f [x0, . . . , xk]the kth divided difference. Computing Ak is an
iterative process, as depicted in the table below.

x0 f [x0]
↘
↗ f [x0, x1]

x1 f [x1]
↘
↗ f [x0, x1, x2]

↘
↗ f [x1, x2]

↘
↗ f [x0, x1, x2, x3]

x2 f [x2]
↘
↗ f [x1, x2, x3]

↘
↗ · · ·

↘
↗ f [x2, x3]

↘
↗ f [x1, x2, x3, x4]

x3 f [x3]
↘
↗ f [x2, x3, x4]

↘
↗ f [x3, x4]

x4 f [x4]
Table 1. Newton’s triangular table.

How do we know the Ak satisfy (1.1)? Suppose pk−1 ∈ Pk−1 has pk−1 (xi) = fi
for i = 0, . . . , k − 1 and qk−1 ∈ Pk−1 has qk−1 (xi) = fi for i = 1, . . . , k. Then
construct

pk (x) =
x− x0

xk − x0
qk−1 (x) +

xk − x
xk − x0

pk−1 (x)

which satisfies pk (xi) = fi for i = 0, . . . , k. Now write

pk (x) = A0 + · · ·+Akx
k

pk−1 (x) = B0 + · · ·+Bk−1x
k−1

qk−1 (x) = C0 + · · ·+ Ck−1x
k−1

2. HERMITE POLYNOMIALS 19

and track the leading coefficients to conclude

Ak =
Ck−1 −Bk−1

xk − x0
,

which is the result we’re after. We have just developed the following result:

Proposition 1.1. The interpolating polynomial of nth degree is

pn (x) =
n∑
i=0

f [x0, . . . , xi] Πi−1
j=0 (x− xj) .

In particular, the linear interpolant is

p1 (x) = f0 +
f (x1)− f (x0)

x1 − x0
(x− x0) .

By construction, the quadratic interpolant p2 includes p1 in its description. More
generally, pn includes pi for all i < n in its description. So the formula above is
recursive: it gives a way to systematically build up higher order interpolants of given
data. Also, note that the ordering of the points x0, . . . , xn in the description above
is irrelevant; interpolating polynomials are uniquely determined without regard to
ordering of the data. This last observation can be easily turned into

Proposition 1.2. Divided differences are invariant under permutation of the
data. That is, given any permutation σ on the set {0, . . . , n},

f [x0, . . . , xn] = f
[
xσ(0), . . . , xσ(n)

]
.

2. Hermite Polynomials

Now suppose we are given data in the form (xi, fi, f ′i). Can we interpolate with
a polynomial that matches both the desired function values and the corresponding
derivatives? As a first example, consider the simple case (xi, fi, f ′i)i=0,1 where we
are given only four pieces of data. For smooth enough f and small ε, this problem
is close to the problem of interpolating the data set

{(x0, f (x0)) , (x0 + ε, f (x0 + ε)) , (x1, f (x1)) , (x1 + ε, f (x1 + ε))} ,

which we would interpolate with

pε3 (x) = Aε0+Aε1 (x− x0)+Aε2 (x− x0) (x− (x0 + ε))+Aε3 (x− x0) (x− (x0 + ε)) (x− x1)

in the Newton scheme. The superscripts on the Ais indicate that the coefficients
in the interpolation depend on ε. We can represent this interpolation with the
following table:

Now we want to take ε → 0 and get an interpolant for the original data set
(xi, fi, f ′i)i=0,1. Consider the divided difference

A1 (ε) = f [x0, x0 + ε] =
f [x0 + ε]− f [x0]

ε
.

As ε→ 0, we recover limε→0A1 (ε) = f ′0. We can we make the suggestive labeling

f [x0, x0] = lim
ε→0

f [x0 + ε]− f [x0]
ε

,

20 2. INTERPOLATION BY POLYNOMIALS

x0 f [x0]
↘
↗ f [x0, x0 + ε]

x0 + ε f [x0 + ε]
↘
↗ f [x0, x0 + ε, x1]

↘
↗ f [x0 + ε, x1]

↘
↗ · · ·

x1 f [x1]
↘
↗ f [x0 + ε, x1, x1 + ε]

↘
↗ f [x1, x1 + ε]

x1 + ε f [x1 + ε]
Table 2. Newton scheme with small ε.

then we have the relation f [x0, x0] = f ′ (x0). Similarly, f [x1, x1] = f ′ (x1). Now if
we let ε→ 0 in our interpolation, we recover

p0
3 (x) = lim

ε→0
pε3 (x)

= f [x0] + f [x0, x0] (x− x0) + f [x0, x0, x1] (x− x0) (x− x0)(2.1)

+ f [x0, x0, x1, x1] (x− x0) (x− x0) (x− x1) .

This is known as a Hermite polynomial and has the following table:

x0 f [x0]
↘
↗ f [x0, x0]

x0 f [x0]
↘
↗ f [x0, x0, x1]

↘
↗ f [x0, x1]

↘
↗ · · ·

x1 f [x1]
↘
↗ f [x0, x1, x1]

↘
↗ f [x1, x1]

x1 f [x1]
Table 3. Cubic Hermite polynomial.

Finally, we ask: does p0
3 interpolate the given data (xi, fi, f ′i)i=0,1? It’s clear

from the table that p0
3 (xi) = f (xi) for i = 0, 1. But also, we have

d

dx

(
p0

3

)
(x0) = f [x0, x0]

and
d

dx

(
p0

3

)
(x1) = f [x1, x1] .

(The first is clear from (2.1); the second follows once we rewrite p0
3 around the

points x1, x1, x0, for then the coefficient on (x− x1) will be f [x1, x1]. Both are

3. INTERPOLATION ERROR 21

clear from the table.) Since f [x0, x0] = f ′0 and f [x1, x1] = f ′1, p0
3 is the desired

interpolating polynomial.
The discussion above showed how to arrive at cubic Hermite interpolation as

a limit of approximating Newton schemes. This process generalizes immediately to
arbitrary data sets of the form (xi, fi, f ′i), which are interpolated by higher order
Hermite polynomials. Lecture 4, 9/29/11

3. Interpolation Error

Recall the expansion

pn (x) =
n∑
i=0

f [x0, . . . , xi] Πi−1
j=0 (x− xj)

for the nth order interpolating polynomial. This almost looks like a Taylor series,
in that the coefficients are almost derivatives. So to estimate interpolation error, we
proceed in a similar way as for Taylor series (where the nth order error is bounded
in terms of the (n+ 1)th derivative).

Suppose pn interpolates for f . Then the error is

en (x) = f (x)− pn (x) .

Given x 6= xi, consider the (n+ 1)th order interpolant

pn+1 (x) = pn (x) + f [x0, x1, . . . , xnx] Πn
j=0 (x− xj) .

In particular, this interpolates at x so that pn+1 (x) = f (x). Thus

en (x) = f (x)− pn (x)

= f [x0, x1, . . . , xn, x] Πn
j=0 (x− xj)

Is an exact expression for the nth interpolation error.
How can we tell if the error is big or small? As predicted above, the size of

the nth divided difference for f depends on the higher derivatives of f . But also,
the error depends on the distribution of the points xi. Of course we cannot always
choose xi in practice, but if we can it would be advantageous to know the best
points xi to use (the so-called “Chebyshev points“).

Proposition 3.1. The nth interpolation error satisfies

en (x) =
f (n+1) (ξ)
(n+ 1)!

for some ξ between the interpolating points.

This follows from

Theorem 3.2. The kth divided difference satisfies

f [x0, . . . , xk] =
f (k) (ξ)
k!

for ξ between the smallest and largest of the points xi.

Proof. For k = 1,
f (x1)− f (x0)

x1 − x0
= f ′ (ξ)

for some ξ, by the mean value theorem. Now consider ek (x) = f (x)−pk (x), which
has ek (xi) = 0 for i = 1, . . . , k. So e′k (ξ) = 0 between the xis. Thus, f ′ (x)−p′k (x)

22 2. INTERPOLATION BY POLYNOMIALS

vanishes at at least k points. Similarly, f ′′ (x) − p′′k (x) vanishes at at least k − 1
points. Going forwards, we see there must exist ξ so that f (k) (ξ) − p(k)

k (ξ) = 0.
Now

Πk−1
j=0 (x− xj) = xk + lower order terms

and thus
f (k) (ξ) = k!f [x0, . . . , xk] .

This proves the theorem. �

4. Piecewise Interpolation

Thus far, we have only discussed interpolation of data with a single polynomial.
Now, we ask: when does a single polynomial fail to be a satisfactory interpolant? In
practice, high order approximations turn out to be quite bad. One silly example can
be found in MATLAB – the authors computed a high order polynomial interpolant
for a large amount of censue data, and concluded negative population. A more
classic example is due to Runge.

Example 4.1. Runge’s phenomenon. Take f (x) = 1
1+x2 and interpolate on

[−5, 5] at equidistant points. Now increase the number of points and so the order
of approximation. Observe how bad the approximation becomes!

But what if application demands interpolating at many points? Polynomials
have the wonderful property of having infinitely many derivatives. But given a
large data set, a better approach is to use piecewise polynomial interpolants. The
simplest case is the piecewise linear, continuous approximation. This has the ob-
vious disadvantage of kinks. In what follows, we’ll develop a way to smooth out
the kinks, via so-called “cubic splines”. As we’ll see, these are piecewise cubic, C2

approximations to the data. But first, recall the cubic Hermite polynomials, built
to match function values and first derivatives:

p3 (x) = f0 + f ′ (x0) (x− x0) +
f [x0, x1]− f ′ (x0)

x1 − x0
(x− x0)2

+
f ′ (x0)− 2f [x0, x1] + f ′ (x1)

(x1 − x0)2 (x− x0)2 (x− x1) .

This polynomial interpolates the data (xi, f (xi) , f ′ (xi))i=0,1.
Now we build the cubic spline. If xi is an interpolation point, we are forced

to match f(xi); however, we are free to chose the derivative si = f ′ (xi). Since we
desire a C2 (piecewise) approximation, the obvious thing to do is the choose si so
that second derivatives match at interpolation points. Explicitly, suppose we have
two Hermite cubic polynomials which interpolate to the left and right of xi. On
the right we have

pi (x) = f (xi) + si (x− xi) +
f [xi, xi+1]− si
xi+1 − xi

(x− xi)2

+
si − 2f [xi, xi+1] + si+1

(xi+1 − xi)2 (x− xi)2 (x− xi+1)

and similarly on the left. Second derivative matching is p′′i (xi) = p′′i−1 (xi), and if
we denote ∆xi = xi+1 − xi then (after some work) we arrive at the requirement

∆xisi−1 + 2 (∆xi−1 + ∆xi) si + ∆xisi = 3 (f [xi, xi−1] ∆xi + f [xi, xi+1] ∆xi−1) .

4. PIECEWISE INTERPOLATION 23

Say x0, . . . , xn are the interpolating points, arranged in increasing order. Then
at x1, . . . , xn−1 we enforce the relation above. This is a system of n− 1 equations.
But there are n + 1 unknowns, s0, s1, . . . , sn. The missing information is at the
endpoints. If s0, sn are known a priori, then we’ll have the same number of equations
as unknowns and the the problem is solvable. Observe that the problem is non-
local – there is coupling between neighboring intervals. But as the coupling itself
is local, the problem is not hard to solve. To see why, consider the matrix equation
corresponding to the system: it is of the form

∗ ∗
∗ ∗ ∗

∗ ∗ ∗

 s1

...
sn−1

 =

 ...

 .

This matrix is tridiagonal, and we claim it is always invertible. Calling the matrix
J , suppose there exists y with Jy = 0. Then identify the largest component yk of
y, i.e. with |yk| ≥ |yi| for all i. Then

2 (∆xi + ∆xi−1) yk = −∆xiyk−1 −∆xi−1yk,

but

|−∆xiyk−1 −∆xi−1yk| ≤ |∆xi + ∆xi−1||yk|

which yields a contradiction unless yk = 0. Such a matrix J is said to be diagonally
dominated.

Now let’s solve for the si. First, perform Gaussian elimination on J . The first
step is

a11 a12

a21 a22 a23

a32 a33 a34

a11 a12

0 ã22 a23

a32 a33 a34

with ã22 = a22 − a12a21

a11
. (a11 6= 0 for a diagonally dominated matrix.) From this

it’s clear that after Gaussian elimination (relatively inexpensive computationally)
we’ll end up with an upper triangular system, which is efficiently solvable.

We have brushed over s0 and sn. Suppose, for example, that we don’t know
s0. To determine s0, we could require the spline to be C3 (instead of just C2) at
the point x1. This would yield s0 in terms of s1 and s2. Or we could approximate
s0 with finite diferences. Or if we know a priori f ′′(x0) = f ′′(xn) = 0 (a phys-
ically legitimate boundary condition in some problems) then s0 is automatically
determined by s1.

What about higher order splines? Doable, but cubics are much nicer to deal
with in practice. What about interpolation in higher dimensions? This is an
important question, and its solution has engineering applications (e.g. computer-
aided design).

24 2. INTERPOLATION BY POLYNOMIALS

5. Quadrature by Polynomial Interpolation

This is an important application of interpolating polynomials. The goal is to
compute ∫ b

a

f (x) dx

as accurately as possible. The idea is the interpolate with a polynomial at a certain
number of points, and then integrate the polynomial. And now that we can inter-
polate in a piecewise fashion, it will be sensible to write the integral above as the
sum of integrals taken over sub-intervals. How then should we choose the points at
which to break up the interval? It turns out this can be automated and optimized;
we’ll discuss so-called “adaptive quadrature” later in this section.

Our approximation is∫ b

a

f (x) dx ≈ I (f) =
k∑
i=0

Aif (xi) .

How can we determine the Ais? Let pk be the kth order interpolant at points xi,
i = 0, . . . , k, then

pk (x) =
∑

Πk
j=0,j 6=k

x− xj
xk − xj

f (xk)

and so

Ai =
∫ b

a

Π
x− xj
xk − xj

dx.

What error are we making in this approximation? We have

f (x) = pk (x) + f [x0, . . . , xk, x]ψk (x)

with ψk (x) = Πk
j=0 (x− xj). So the error is

E (f) =
∫ b

a

f [x0, x1, . . . , xk, x]ψk (x) dx.

Unfortunately, this is a quite complicated expression. Recall from calculus

fmin

∫ b

a

g (x) dx ≤
∫ b

a

f (x) g (x) dx ≤ fmax

∫ b

a

g (x) dx

so long as g does not change sign on [a, b]. Then we can use an intermediate value
argument to bound the integral. And as f [x0, . . . , xk, x] = f (k+1) (ξ) /(k + 1)! for
ξ in [a, b], the estimates will be explicit. In what follows, we present the results of
this program for several different interpolants.

5.1. Trapezoid Rule. This first rule comes by interpolating f linearly at the
endpoints of [a, b]. Let ψ1 (x) = (x− a) (x− b) and note ψ1 has non-zero integral
on [a, b]. Also compute ∫ b

a

(x− a) (x− b) dx =
(b− a)3

6

and ∫ b

a

(
f(a) +

f (b)− f (a)
b− a

(x− a)
)
dx =

f (a) + f (b)
2

(b− a) .

5. QUADRATURE BY POLYNOMIAL INTERPOLATION 25

Thus we have the trapezoid rule,∫ b

a

f(x) dx ≈ f (a) + f (b)
2

(b− a)

with associated error

error = −f
′′ (η)
12

(b− a)3
.

5.2. Midpoint Rule. Now, interpolate f linearly at the left endpoint and the
midpoint of [a, b]. This yields the midpoint rule,∫ b

a

f(x) dx ≈ f
(
a+ b

2

)
(b− a) .

Let’s evaluate the error

error =
∫ b

a

f

[
a+ b

2
, x

](
x− a+ b

2

)
dx.

Since x− (a+ b) /2 changes sign, we can’t proceed directly as before. But note∫ b

a

(
x− a+ b

2

)
dx = 0,

and as

f

[
a+ b

2
, x

]
= f

[
a+ b

2
,
a+ b

2

]
+ f

[
a+ b

2
,
a+ b

2
, x

](
x− a+ b

2

)2

we find

error =
∫ b

a

f

[
a+ b

2
,
a+ b

2
, x

](
x− a+ b

2

)2

dx.

Thus the error associated with the midpoint rule is

error =
f ′′ (ξ)

24
(b− a)3

.

Note the midpoint rule is exact for both constant and linear functions. The
next rule will be exact for quadratic functions, and also for cubic functions.

5.3. Simpson’s Rule. Interpolate f with a quadratic polynomial at the end-
points and midpoint of [a, b]. Here are the details. We expect∫ b

a

f (t) dt = Af (a) +Bf

(
a+ b

2

)
+ Cf (b) ,

then A,B,C are determined via the canonical basis for third order polynomials,
{1, t, t2}. Of course we can use any basis, e.g. the Lagrange basis, to find the
coefficients. Some are easier to work with than others.

Taking f (t) ≡ 1, we get

A+B + C = b− a.

Taking f (t) = t− (a+ b) /2 we get
∫ b
a
f = 0, so

A

(
a− b

2

)
+ C

(
b− a

2

)
= 0.

26 2. INTERPOLATION BY POLYNOMIALS

And for f (t) = (t− (a+ b) /2)2 we get
∫ b
a
f = (b− a)3

/6, so

A

(
b− a

2

)2

+ C

(
b− a

2

)2

=
(b− a)3

6
.

Solving these equations gives

A = C =
1
6

(b− a) ,

B =
2
3

(b− a) .

Thus Simpson’s rule is∫ b

a

f(x) dx ≈ b− a
6

(
f (a) + 4f

(
a+ b

2

)
+ f (b)

)
.

The associated error is

error = −f
(4) (ξ)

90 · 25
(b− a)5

.

As remarked, Simpson’s rule is exact up to cubic polynomials. This is an
immediate consequence of the error estimate above; it’s also easy to check each
of 1, t − (a+ b) /2, (t− (a+ b) /2)2

, (t− (a+ b) /2)3 are integrated exactly by the
rule, and these form a basis for the cubic polynomials.Lecture 5, 10/6/11

5.4. Corrected Trapezoid Rule. Interpolate with a Hermite cubic polyno-
mial at the endpoints of [a, b]. This yields the corrected trapezoid rule,∫ b

a

f(x) dx ≈ b− a
2

(f (a) + f (b)) +
(b− a)2

12
(f ′ (a)− f ′ (b)) .

One could derive this by computation, or just check it is correct by checking exact-
ness on cubic polynomials. The associated error is

error =
f (4) (ξ)

720
(b− a)5

.

This rule can be useful when we have two subintervals [xi, xi+1] and [xi+1, xi+2]
of the same width. The rule gives∫ xi+2

xi+1

f ≈ xi+2 − xi+1

2
(f (xi+1) + f (xi+2)) +

(xi+2 − xi)2

12
(f ′ (xi+1)− f ′ (xi+2)) ,

and observe that the derivative term at xi+1 cancels upon adding this to the ex-
pression for

∫ xi+1

xi
f . So if evaluating f ′ is hard at some point x̃, by subdividing

at x̃ and employing the corrected trapezoid rule twice, we can completely avoid
evaluating f ′(x̃).

5.5. Adaptive Simpson’s Rule. The error estimate for Simpson’s rule re-
quires knowledge of the fourth derivative of f . But in practice, we don’t know
anything about the derivatives of f . So what good is this estimate? Suppose we
have a function whose fourth derivative is well-behaved, and suppose we cut [a, b]
into subintervals and approximate the integral. If we then double the number of
subintervals, how much better will the approximation become? This kind of ques-
tion is immediately answerable via the error bound. (Suppose the fourth derivative
is constant, then cut [a, b] into two equal pieces and consider the error; divide those

5. QUADRATURE BY POLYNOMIAL INTERPOLATION 27

pieces further and consider the error again.) This observation allows us to formulate
a first algorithm for adaptive mesh refinement – the adaptive Simpson’s rule.

Consider the integral

Ii =
∫ xi+1

xi

f (x) dx

on a sub-interval [xi, xi+1]. Let h = xi+1 − xi, then Simpson’s rule says

Ii ≈ Si =
h

6

(
f (xi) + 4f

(
xi+ 1

2

)
+ f (xi+1)

)
.

Consider dividing the subinterval further to get

Si =
h

12

(
f (xi) + 4f

(
xi+ 1

4

)
+ 2f

(
xi+ 1

2

)
+ 4f

(
xi+ 3

4

)
+ f (xi+1)

)
.

Have we improved the approximation? We know

Ii − Si = − 1
90
f (4) (η)

(
h

2

)5

and

Ii − Si = −2
1
90
f (4) (η)

(
h

4

)5

.

(Think of f (4) (η) as an average over the two sub-subintervals.) So if f (4) is ap-
proximately constant, then

Si − Si =
f (4) · h5

25 · 90

(
1− 24

24

)
and so

I − Si = −Si − Si
15

.

Now suppose we want to evaluate the integral on the whole interval [a, b] to within
ε. Then if, after refining, we get

|I − Si| =
∣∣Si − Si

15

∣∣ ≤ εh

b− a
,

adding the sub-subintervals was enough, and we should not refine any further.
Conversely, if even after refining this criterion is not met, we should keep the sub-
subintervals and try to refine each of them further. This is a recursive process.

When will such a process fail? Consider the problem

I (λ) =
∫ b

a

f (x, λ) dx

where we need to compute I as a function of λ. Adaptive mesh refinement may
lead to vastly different meshes for different values of the parameter λ. But suppose
I is smooth in λ a priori. Then this is a property we expect the computation
to preserve. However, by introducing different meshes across different λs, we will
easily fail to reproduce I as a smooth function after computing.

28 2. INTERPOLATION BY POLYNOMIALS

6. Orthogonal Polynomials

We have already seen one way of approximating an arbitrary function by poly-
nomials, via polynomial interpolation. One can take a more abstract approach
and view the space of real-valued functions as a normed linear space. Then any
orthonormal basis produces readymade approximations in the given norm. In this
section, we’ll develop the basic theory of orthogonal polynomials and see some
useful examples. In the next section, we’ll apply the results to produce Gaussian
quadrature.

Define a weighted inner product on the space of real-valued functions

(f, g)ω =
∫ b

a

ω (x) f (x) g (x) dx

with the weight ω (x) ≥ 0 (ω must not vanish a.e.). As usual, ||f ||2ω = (f, f)ω.
As we hope to approximate f , we look for polynomials which span this space; in
particular we look for an orthonormal basis. Why do we care about finding such a
basis? Given a function f , we hope to find the best possible approximation p∗n ∈ Pn,
satisfying

||f − p∗n||ω ≤ ||f − pn||ω
for all pn ∈ Pn. Suppose {φi} is an orthonormal basis, then all pn ∈ Pn are of the
form pn =

∑n
i=0 αiφi. We can calculate explicitly∣∣∣∣f − n∑

i=0

αiφi
∣∣∣∣2
ω

= ||f ||22 − 2
n∑
i=0

αi (f, φi)ω +
n∑
i=0

α2
i ,

so to get the best approximation we should take αi = (f, φi)ω. (One way to see
this is to differentiate w.r.t. the αi’s and set the result equal to zero.) So an
orthonormal set can be very convenient. The good news is there are plenty of
accesible orthonormal bases: given any basis we can simply orthonormalize it via
the Gram-Schmidt process.

Example 6.1. Take w ≡ 1, a = −1, b = +1. Start with the basis
{

1, x, x2, . . .
}

then orthonormalize with Gram-Schmidt. This produces the Legendre polynomials.

Proposition 6.2. Suppose {φj} is an orthonormal set of polynomials under
some weight ω and on [a, b]. Suppose φi (x) ∈ Pi is the ith degree polynomial in
this set. Then all the roots of φi lie in (a, b).

Proof. Define Qr = (x− x1) · · · (x− xr) when x1, x2, . . . , xr are the roots of
φi in (a, b). We want to prove r = i. Assume all roots are simple. Then∫ b

a

ω (x)φi (x)Qr (x) dx 6= 0

for φiQr is of one sign on [a, b]. But if r < i then (φi, Qr) = 0 which is a contradic-
tion.

Can there be double roots? If x0 is a double root then write φi (x) = (x− x0)2
ψi−2 (x)

and compute

0 =
∫ b

a

ω (x)φi (x)ψi−2 (x) dx =
∫ b

a

ω (x) [(x− x0)ψi−2 (x)]2 dx 6= 0

which is a contradiction. This completes the proof. �

6. ORTHOGONAL POLYNOMIALS 29

Although the Gram-Schmidt process is guaranteed to produce an orthonormal
set out of any linearly independent set, the algorithm becomes less computationally
tractable as the order of the polynomials goes up. Can we compute an orthonormal
set {pn} in a more efficient manner? In fact, there is a recursive formula:

pn+1 (x) = (Anx+Bn) pn (x)− Cnpn−1 (x) .

Of course, pn+1 is always describable in terms of p0, . . . , pn, but what is interesting
(and useful) here is that only pn−1 and pn are needed? Let’s prove this. For
k < n− 1 we have∫ b

a

ω (Anx+Bn) pn (x) pk (x) dx−
∫ b

a

ωcnpn−1 (x) pk (x) dx = 0

since the pj are orthogonal for j ≤ n. So there are no additional terms needed.
The coefficients An, Bn, Cn are determined in general by the system

∫ b
a
w (Anx+Bn) pn (x) pn (x) = 0∫ b

a
w (Anx+Bn) pnpn−1 = cn

||pn+1||w = 1
.

An, Bn, Cn are known for all of the classical polynomials.

6.1. Chebyshev Polynomials. Take

ω (x) =
1√

1− x2

and [a, b] = [−1,+1], then orthonormalize 1, x, x2, . . . by Gram-Schmidt. The result
is the Chebyshev polynomials. The first polynomial is the constant T0 (x) = 1√

π
. In

general,

Tn (x) =

√
2
π

cos (n · arccosx) .

The recursion relation can be derived by trigonometry. From

cos ((n+ 1) θ) + cos ((n− 1) θ) = 2 cos θ cos (nθ)

we find
Tn+1 (x) = 2xTn (x)− Tn−1 (x) .

Once we know T0 = 1√
π

and T1 =
√

2
πx we can produce the rest via this relation.

The Chebyshev polynomials are quite interesting. For one, their roots (called
the Chebyshev points) are very important for accurate interpolation and quadrature.
The roots collect at the edges of [−1, 1]. Now recall Runge’s example. As it turns
out, interpolating at the Chebyshev points is just the right thing to do to correct the
error. And we’ll see that the Chebyshev polynomials give the best approximation
not only in the w-norm, but also in the ∞-norm.

Lecture 7, 8/20/11
6.2. Legendre Polynomials. Now take ω ≡ 1, [a, b] = [−1,+1], and or-

thonormalize 1, x, x2, . . . by Gram-Schmidt. This yields the Legendre polynomials,
which are in general given by

Ln (x) =

√
n+

1
2

1
n!2n

(
d

dx

)n (
x2 − 1

)n
.

30 2. INTERPOLATION BY POLYNOMIALS

Observe the degree of Ln is n. And the Ln are indeed orthogonal; to see this, write

(Ln, Lm) =
∫ 1

−1

Ln (x)Lm (x) dx

= C ·
∫ 1

−1

[(
d

dx

)n (
x2 − 1

)n] [(d

dx

)m (
x2 − 1

)m]
dx

and integrate by parts repeatedly. They are also normalized, but we won’t prove
that here.

A related set of polynomials (sometimes also called the Legendre polynomials)
are given by

ln (x) =
1√

n+ 1/2
Ln (x) .

These are not normalized, but instead satisfy ln (0) = 1. The recurrance relation
for the ln is

ln+1 (x) =
2n+ 1
n+ 1

xln (x)− n

n+ 1
ln−1 (x) .

Now observe that

d

dx

((
1− x2

) d

dx
(ln)

)
=

d2

dx2
ln (x)− 2x

d

dx
ln (x) = −n (n+ 1) ln (x) .

So the ln are eigenvectors of the differential operator L (·) = d
dx

((
1− x2

)
d
dx (·)

)
.

Since

(Lf, g) = −
∫ 1

−1

(
1− x2

)
f ′g′ dx = (f,Lg)

so L is self-adjoint. So its eigenvalues are all real; indeed, they are −n (n+ 1).
We could go in the other direction, and start off by defining the operator L on

the space of polynomials. Then if we look for a polynomial eigenvector a0 + a1x+
· · ·+ anx

n + an+1x
n+1 + . . . with eigenvalue −n (n+ 1), we’ll find an+1 = an+2 =

· · · = 0. So −n (n+ 1) is exactly the right eigenvalue to demand to get an nth
order polynomial eigenvector. Eventually if we solve for the a0, . . . , an, we’d end
up at ln.

6.3. Hermite Polynomials. What about unbounded domains? Take a =
−∞ and b = +∞ and ω (x) = e−x

2
. Orthonormalizing the standard basis now

results in the Hermite polynomials. These take the form

pn (x) = Cn
1

ω (x)
dn

dxn
e−x

2

for some choice of constant Cn depending only on n. And as before, one can write
down a differential equation that the pn solve. One can do this for all the classical
polynomials.

7. Gaussian Quadrature

Now we’ll use the theory of orthogonal polynomials to approximate∫ b

a

f(x) dx.

7. GAUSSIAN QUADRATURE 31

The idea is still to approximate a function by a polynomial, and then to compute
the integral of that polynomial. In other words, the goal is to find Ai so that∫ b

a

f (x) dx ≈
n∑
i=0

Aif (xi) .

Simpson’s rule is a choice of Ai which integrates polynomials of degree two exactly.
And as it turned out, this rule also integrated polynomials of degree three exactly.
Now we ask if it’s possible to integrate higher degree polynomials exactly. We’ll see
that by selecting A0, . . . , An and x0, . . . , xn in a clever way, we can integrate all of
P2n+1 exactly. This is almost intuitive – consider that the vector space P2n+1 has
dimension 2n+ 2, and that there are n+ 1 points xi and n+ 1 coefficients Ai.

7.1. Gauss-Lagrange Quadrature. We start by finding the Hermite inter-
polant of f at x0, . . . , xn, which will match the data {f (xi) , f ′ (xi)}i=0,...,n. As we
are working towards quadrature, this may seem like a bad first step (we don’t know
f ′(xk) a priori). But later we’ll see that it’s possible to choose the xk so that the
values f ′(xk) are never needed. Now we guess that the Hermite interpolant takes
the form

p (x) =
n∑
k=0

Hk (x) f (xk) +
n∑
k=0

Kk (x) f ′ (xk)

for some Hk,Kk ∈ P2n+1. Observe that p will be the required interpolant if

Hk (xi) = δik, Kk (xi) = 0, (Hk)′ (xi) = 0, (Kk)′ (xi) = δik

where δik is the Kronecker delta. Recall the polynomials

Lk (x) =
Πn
i=0,i6=k (x− xi)

Πn
i=0,i6=k (xk − xi)

∈ Pn

used in Lagrange interpolation; these satisfy Lk (xi) = δik. Define

Hk (x) = (Lk (x))2

(
1− 2

d

dx
Lk (xk) · (x− xk)

)
Kk (x) = (Lk (x))2 (x− xk) .

We have Hk (xi) = δik and

d

dx
Hk (x) =

(
2Lk (xk)

d

dx
Lk (xk)

)(
1− 2 · d

dx
Lk (xk) · (x− xk)

)
+ (Lk (x))2

(
−2

d

dx
Lk (xk)

)
so that (Hk)′ (xi) = 0 for all i. Also Kk (xi) = 0 and

d

dx
Kk (x) = 2Lk (x)

d

dx
Lk (x) · (x− xk) + (Lk (x))2

so that (Kk)′ (xi) = δik. Thus we’ve procured the Hermite interpolant of f .
Now we’ll integrate p to get the weights Ai. In doing so, we’ll see how to choose

the xi. First, suppose [a, b] = [−1,+1]. Then write∫ 1

−1

p (x) dx =
∑

Wkf (xk) +
n∑
k=0

Vkf
′ (xk)

32 2. INTERPOLATION BY POLYNOMIALS

with Wk =
∫ 1

−1
Hk (x) dx and Vk =

∫ 1

−1
Kk (x) dx. If we can select x0, . . . , xn so

that Vk = 0 for k = 0, . . . , n, then the quadrature rule will read∫ 1

−1

f(x) dx ≈
∑

Wkf (xk) .

So observe

Vk =
∫ 1

−1

Lk (x)Lk (x) · (x− xk) dx = C

∫ 1

−1

Lk (x) Πn
i=0 (x− xi) dx

for some constant C 6= 0. As Lk ∈ Pn, the idea is to choose x0, . . . , xn to be
the roots of the (n + 1)th Legendre polynomial ln+1 ∈ Pn+1. Then Πn

i=0 (x− xi)
will be a multiple of ln+1 and hence Vk = 0 for Pn ⊥ ln+1. (Recall the Legendre
polynomials form an orthonormal basis on [−1, 1] with ω ≡ 1.) So we’ve found
the desired interpolation points xi and corresponding weights Ai = Wi. Note that
Wk > 0 for all k; to see this compute

Wk =
∫ b

a

(Lk (x))2
dx−

∫ b

a

(Lk (x))2 (x− xk) · 2 d

dx
Lk (x) dx

and observe that the second integral vanishes by our choice of xi.
By a linear change of variable we can relax the assumption [a, b] = [−1, 1].

Then the general quadrature rule reads∫ b

a

f(x) dx ≈ b− a
2

n∑
i=0

Aif (` (xi))

where `(x) = b−a
2 x+ b−a

2 . This is called Gauss-Lagrange quadrature. The key idea
was to approximate the integral of f by the integral of its Hermite interpolant at
n+ 1 quadrature points. As every polynomial p ∈ P2n+1 can be exactly written as
a Hermite interpolant at n + 1 distinct points, we can now integrate all of P2n+1

exactly.

7.2. Gauss-Lobatto Quadrature. Recall we proved that the roots of any
polynomial belonging to an orthonormal set on [−1, 1] must lie in the interior
(−1, 1). Thus the quadrature points in our scheme are in (−1, 1). What if we
require x0 = −1, xn = +1? In this case, there are 2n free parameters: x1, . . . , xn−1

and A1, . . . , An−1. So we should expect to only integrate polynomials from P2n−1

exactly.
To derive the quadrature rule, we start by interpolating f with

p (x) =
n∑
k=0

Hk (x) f (xk) +
n−1∑
k=1

Kk (x) f ′ (xk)

where Hk, Kk are as above. Note the second sum does not include the endpoints.
Again, we compute∫ 1

−1

p (x) dx =
∑

Wkf (xk) +
n∑
k=0

Vkf
′ (xk)

with Wk =
∫ 1

−1
Hk (x) dx and Vk =

∫ 1

−1
Kk (x) dx. We hope to choose x1, . . . , xn−1

so that Vk = 0 for all k. So far, the derivation has not changed.

7. GAUSSIAN QUADRATURE 33

Now, we have

Vk = C

∫ 1

−1

Lk (x) (1− x2)Πn−1
i=1 (x− xi) dx

where Lk ∈ Pn. To ensure this was zero before, we chose x0, . . . , xn to be the roots
of the (n+ 1)th Lagrange polynomial ln+1 ∈ Pn+1. But now observe that∫ 1

−1

d

dx
ln (x)

d

dx
lm (x)

(
1− x2

)
dx = 0

for n 6= m, so that the derivatives d
dx ln of the Legendre polynomials form an

orthgonal basis (up to normalization) with respect to the weight ω (x) = 1 − x2.
With this in mind, we choose x1, . . . , xn−1 to be the roots of d2

dx2 ln+1 ∈ Pn−1, then

Vk = C̃

∫ 1

−1

Lk (x)
(
d2

dx2
ln+1(x)

)
ω(x) dx = 0

as d2

dx2 ln+1 ⊥ Pn with respect to ω. This is what we wanted.
To sum up, we have produced a quadrature rule at the points −1 = x0 < x1 <

· · · < xn−1 < xn = 1 where x1, . . . , xn−1 are the roots of the second derivative of
the (n+ 1)th Legendre polynomial. This is known as Gauss-Lobatto quadrature.

What about
∫∞
−∞ f?

CHAPTER 3

Solving Linear Equations

Consider what happens to p (x) = a0 + a1x + · · · + anx
n when we replace

each ai by ai + δai. We ask: what happens to the roots? Why is this a relevant
question? To get the eigenvalues of a matrix, we would solve for the roots of
its characteristic polynomial. If we change the entries of the matrix, then the
coefficients on the characteristic polynomial change accordingly. So the question is:
how do the eigenvalues of a matrix change if its entries are perturbed?

Let’s take n = 20, and say the roots are first xi = i with i = 1, . . . , 20. As we
change the coefficients, the roots xi will change. We hope to understand this map.
Recall we considered the ratio∣∣f (x+ δx)− f (x)

f (x)

∣∣/∣∣δx
x

∣∣
before with f (x) =

√
x and so on. Now we look at this ratio with f the map from

the coefficients to a particular root – the root x15. Set p̃ (x) = ã0 + ã1x+ . . . with
ãi = ai+δai and look at the equations p (xj) = 0 and p̃ (xj + δxj) = 0. In particular
suppose we perturb only the ith coefficient. Then we’ll have p̃ (x) = p (x) + δaix

i

and

p̃ (xj − δxj) = p (xj) + p′ (xj) δxj + δaixj

= p′ (xj) δxj + δaixj

= 0

to first order. Hence

δxj = −
δaix

i
j

p′ (xj)
.

To get the denominator, write p (x) = Π20
i=1 (x− i) and so p′ (x) =

∑20
j=1 Π20

i=1,i6=j (x− i).
Thus p′ (xj) = Π20

i=1,i6=j (xj − xi). It turns out the largest this gets is with j = 15,
then |p′ (xj)| = 4!15!. The relative change in the roots is∣∣δxj

xj

∣∣/∣∣δai
ai

∣∣ =
|δa15|1514

4!15!
· |ai|
|δa15|

=
1514

4!15!
|ai|.

And |ai| ≈ 1.16× 109, so ∣∣δxj
xj

∣∣/∣∣δai
ai

∣∣ ≈ 5.1× 1013.

This is disasterous. What have we learned? Solving the characteristic polynomial
to find the eigenvalues of a matrix is a bad idea.

35

	Chapter 1. Singular Value Decomposition and QR Factorization
	1. Orthogonality
	2. The Singular Value Decomposition
	3. Projection Operators
	4. The QR Factorization
	5. Least-Squares

	Chapter 2. Interpolation by Polynomials
	1. Newton Interpolation
	2. Hermite Polynomials
	3. Interpolation Error
	4. Piecewise Interpolation
	5. Quadrature by Polynomial Interpolation
	6. Orthogonal Polynomials
	7. Gaussian Quadrature

	Chapter 3. Solving Linear Equations

