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CHAPTER 1

Introduction to Probability Theory

1. Probability Spaces
Lecture 1, 9/6/11

Definition 1.1. A measurable space is a pair (Ω,B) where Ω is a set and B
is a σ-field of subsets of Ω, i.e. B contains ∅ and is closed under complementation
and countable unions.

It follows immediately from the definition that every σ-field also contains Ω
and is closed under countable intersections.

Proposition 1.2. 1 Given any collection F of subsets of Ω, there exists a
unique σ-field B such that

• B ⊃ F and
• for any σ-field G with G ⊃ F , it follows that G ⊃ B.

The σ-field B given by the proposition above is called the σ-field generated by
F and is often denoted σ (F). It is the smallest σ-field containing F . In general
it is difficult to say exactly whether a set belongs to a given σ-field. But the
proposition above gives a convenient way to construct a σ-field from the interesting
sets (whatever those may be).

Examples 1.3. Here are some first examples of measure spaces.
(1) A pair of dice:

Ω1 = {(ω1, ω2) : ωi ∈ {1, 2, . . . , 6} for i = 1, 2} ,
B1 = P (Ω1) .

Or if dice are indistinguishable, replace B1 with

B′1 = {A : (ω1, ω2) ∈ A =⇒ (ω2, ω1) ∈ A} .

(2) Number of cars passing an intersection (in a one-minute period):

Ω2 = {0, 1, 2, . . . } ,
B2 = P (Ω2) .

(3) Arbitrarily long (or infinite) sequences of tosses of a coin:

Ω3 = {(ω1, ω2, . . . ) : ωi ∈ {0, 1}} .

We want to understand events of the form

{ω = (ω1, ω2, . . . ) : ω1 = ε1, . . . , ωk = εk, ε1, . . . , εk ∈ {0, 1}} .

So let F denote the collection of such events, and take B3 = σ (F) .

1This is exercise 1.7 in the text.
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6 1. INTRODUCTION TO PROBABILITY THEORY

(4) Point processes in space (e.g. one could study the distribution of galaxies
in the universe):

Ω4 =
{
ω : ω ⊂ R3 s.t. ∀ bounded Λ ⊂ R3, ω ∩ Λ is finite

}
.

Let Λ be an open, bounded subset of R3 and let

A = {ω : |ω ∩ Λ| = n}
for fixed n ∈ {0, 1, 2, . . . }. Let F be the collection of all such An for all
possible Λ, and take B4 = σ (F).

Definition 1.4. A probability measure P on (Ω,B) is a function from B to
[0, 1] such that

• P (Ω) = 1
• P is countably additive, i.e. if A1, A2, . . . are disjoint members of B then

P (∪∞n=1An) =
∞∑
n=1

P (An) .

Note that countable additivity is equivalent to the following continuity prop-
erty:2 If B1 ⊃ B2 ⊃ · · · and Bn ∈ B for all n then

P (∩∞n=1Bn) = lim
n→∞

P (Bn) .

Taking complements, we get another equivalent continuity property: If C1 ⊂
C2 ⊂ · · · and Cn ∈ B for all n then

P (∪∞n=1Cn) = lim
n→∞

P (Cn) .

Definition 1.5. A probability space is a triple (Ω,B, P ) as above.

If Ω is countable and B = P (Ω) then a probability measure is uniquely deter-
mined by the number p (ω) = P ({ω}) for each ω ∈ Ω, provided p (ω) ≥ 0 for each
ω and

∑
ω∈Ω p (ω) = 1. In this case, we have

P (A) =
∑
ω∈A

p (ω)

for any A ∈ B.

Example 1.6. Recall the previous examples. For Ω1, we could take p (ω) =
1/36 for each ω, supposing we have fair, independent dice. For Ω2, we could take
p (ω) = e−λ λ

ω

ω! , the Poisson distribution with mean λ > 0. But (3) and (4) are not
as straightforward.

What if Ω = σ (F) is uncountable? We may know what P should be on the
smaller collection F , e.g.

P ({ω : ω1 = ε1, . . . , ωk = εk}) =
(

1
2

)k
in the third example above. This gives rise to the following questions in the general
context: Given Ω and B = σ (F), if P is first defined on F , then

(1) Can the domain of P be extended to B such that P is a probability
measure? (In particular, how can we guarantee countable additivity?)

2Proof of which is problem 1 from problem set 1 (also exercise 1.2 in the text).
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(2) Is the extension to B unique?
Basic answers to these questions are in the following definitions and theorems.

Definition 1.7. A field F existing of subsets of Ω is a collection closed under
complementation and finite unions. A finitely addivitive function P from F to [0, 1]
with P (Ω) = 1 is called countably additive on F if for any decreasing sequence
A1 ⊃ A2 ⊃ · · · with Aj ∈ F for all j and with ∩∞n=1An = ∅, we have

lim
n→∞

P (An) = 0.

Theorem 1.8 (Caratheodory Extension Theorem). If F is a field and P is
countably additive on F as above, then there exists a unique probability measure P ′

on B = σ (F) such that P ′|F = P .

See page four of the text for a discussion of the proof. To use the theorem, we
need a field. Consider the next example.

Example 1.9. The field of subsets of R. Let I be the collection of intervals of
the form (a, b] with a < b or (−∞, b] or (a,∞). Then the finite disjoint unions of
intervals from I form a field.

Lecture 2, 9/13/11

Exercise 1.10. Check that the collection of finite disjoint unions of intervals
in the example above indeed form a field.

Definition 1.11. The σ-field generated by the field in the previous example
is called the Borel σ-field, B. Any element of B is called a Borel subset of R.

To define a probability measure on (R,B), we’ll define it first on intervals (a, b],
and then extend uniquely via the Caratheodory extension theorem.

Definition 1.12. The Lebesgue measure is the unique measure λ such that
λ ((a, b]) = b− a.

Remark. But λ is not a probability measure, as λ (R) = ∞. We’ll see next
how to construct probability measures via the extension theorem.

Suppose F (x) is a monotone increasing and right-continuous function on R.
Define the set function

λF ((a, b]) = F (b)− F (a) .
Note if F (x) = x, then λF ((a, b]) = λ ((a, b]) and so λF extends to the Lebesgue
measure. Now suppose that F (−∞) = 0 and F (+∞) = 1. Then λF is a probability
measure, for

λF (R) = lim
b→∞
a→−∞

F (b)− F (a) = 1− 0 = 1

by our assumption.

Example 1.13. Let F : R→ R be given by

F (x) =

{
0 x < 0
1 x ≥ 0

.

Note that
λF ((−∞,−ε]) = F (−ε)− F (−∞) = 0− 0 = 0,

λF ((−∞, 0]) = F (0)− F (−∞) = 1,
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and
λF ((−∞,∞)) = 1.

λF generates the Dirac δ-measure (or point mass) which satisfies

δ (U) =

{
1 0 ∈ U
0 0 /∈ U

.

In a similar way we can generate the point mass at x,

δx (U) =

{
1 x ∈ U
0 x /∈ U

.

Claim. λF is countably additive on F iff F is right-continuous.

Definition 1.14. A distribution function F (x) is a right-continuous, non-
decreasing function on R which satisfies F (−∞) = 0 and F (+∞) = 1.

Proposition 1.15. If P is a probability measure on (R,B), then F (x) =
P ((−∞, x]) is a distribution function.

Theorem 1.16. Conversely, for every distribution function F , there exists a
unique probability measure on (R,B) with P ((−∞, x]) = F (x).

Now we’ll see an important class of probability measures. Let x1, x2, . . . be a
sequence of distinct real numbers, and let p1, p2, · · · ≥ 0 satisfy

∑
pn = 1. Define

the measure

P (A) =
∑

n:xn∈A
pn =

∞∑
n=1

pn · 1A (xn) .

These are called discrete probability measures on R. What is the distribution
function for P? We have

F (x) = P ((−∞, x]) =
∑

n:xn≤x

pn.

Here is an example of such a probaiblity measure.

Example 1.17. The Poisson probability measure on R with rate λ > 0. Set
x1 = 0, x2 = 1, . . . , xn = n−1, . . . and set pn = λn−1

(n−1)!e
−λ. The discrete probability

measure generated by these xn, pn is the Poisson measure.

Example 1.18. Let x1, x2, . . . be a denumeration of Q. Let pn = 2−n. Let

P =
∑

pnδxn =
∑ 1

2n
· δxn .

This is an important measure and has some strange properties. For example:

Proposition 1.19. The distribution function

F (x) =
∑

n:xn≤x

1
2n

is strictly increasing.

Proof. Fix x and let ε > 0. The interval (x, x+ ε] contains rational numbers,
and hence has positive probability. Thus

F (x+ ε)− F (x) = P ((x, x+ ε]) > 0.

�
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This measure is a great source of counterexamples, and is worth remembering.

Example 1.20. Suppose f is a non-negative, (Lebesgue)-integrable function
with

∫∞
−∞ f (y) dy = 1. (Such an f is known as a density function.) Define the

distribution function

F (x) =
∫ x

−∞
f (y) dy

and let P satisfy P ((−∞, x]) = F (x). (Check that F is indeed a distribution
function.) By the fundamental theorem of calculus,

d

dx
F (x) = f (x)

almost everywhere. We’ll see why later.

2. Measure Theoretic Integration

First we must identify which functions we expect to integrate.

Definition 2.1. A (real-valued) measurable function on a measure space (Ω,Σ)
is a map f : Ω→ R such that for all Borel B ⊂ R, f−1 (B) ∈ Ω.

Generically, a measurable function has the property that the preimages of mea-
surable sets are measurable.

Definition 2.2. Let (Ω,Σ, P ) be a probability space. A random variable (rv)
on (Ω,Σ, P ) is a measurable function.

So what is the difference here? In measure theory we care about the space,
(R,B), and objects like measurable functions help you understand the space. In
probability, we care about random variables (observables), and we choose the space
Ω to help us understand the random variables. We usually supress the argument
when writing a random variable, so we would write X to mean the random variable
(measurable function) X (a).

Definition 2.3. A map f : Ω1 → Ω2 between measure spaces is measurable if
for all B ∈ Σ2, f−1 (B) ∈ Σ1. Such an f is called an Ω2-valued random variable.

Remark. In this course, the functons we’ll discuss will be measurable. So
it’s nice to know that certain classes of functions (e.g. continuous functions) are
measurable and that the usual operations (e.g. +,×, (·)−1

, ◦,
∫

(·) , ddx (·) , lim (·))
preserve the property of measurability. Proof of these facts can be found in any
standard text on measure theory.

Example 2.4. Let X1, X2, X3, X4 be real-valued random variables (on some
measure space (Ω,Σ, P )). Define the matrix-valued random variable

Y =
(
X1 X2

X3 X4

)
.

Let Ω2×2 be the space of 2 × 2 matrices (Ω2×2
∼= R4), then Y : Ω → Ω2×2 is

measurable.

Here are the steps to building a theory of integration:
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(1) Define the integral∫
Ω

f (ω) dP (ω) =
∫
f dP

for simple functions f , i.e. finite linear combinations of indicator functions
of measurable sets.

(2) Extend the definition to bounded functions.
(3) Extend to non-negative functions.
(4) Extend to integrable functions (suitably defined).

Here is step four. If f is measurable, define the functions

f+ (ω) = f (ω) · 1[0,∞) (f (ω)) = max (f, 0)

f− (ω) = −f (ω) · 1(−∞,0] (f (ω)) = −min (f, 0) .

Then f+, f− are measurable, and by the construction f = f+−f− and |f | = f++f−.
We way that f is integrable if

∫
Ω
|f | dP <∞, and in that case we define∫

f dP =
∫
f+ dP −

∫
f− dP.

Example 2.5. Consider f : R → R given by f (x) = sinx. One might be
tempted to say

∫
f = 0, but in fact f is not integrable under our definition. So

∫
f

is not well defined.

Definition 2.6. If X : Ω → R is a real-valued random variable which is
integrable, then we define its expectation to be the quantity

E [X] =
∫

Ω

X (ω) dP (ω) .

Here are some useful theorems of integration:

• Monotone Convergence Theorem: IfXn ↑, then limn→∞E [Xn] = E [limn→∞Xn].
• Dominated Convergence Theorem: If |Xn| ≤ Y for integrable Y , then

limn→∞E [Xn] = E [limn→∞Xn].
• Bounded Convergence Theorem: If |Xn| ≤M <∞, then limn→∞E [Xn] =
E [limn→∞Xn].

• Jensen’s Inequality: If φ is convex, then φ (E [Xn]) ≤ E [φ (Xn)].
Lecture 3, 9/20/11

These theorems hold under pointwise convergence of Xn → X, but they also hold
under a weaker kind of convergence, in which the set where Xn 6→ X has probability
zero.

Definition 2.7. If Xn is a sequence of (real-valued) random variables on
(Ω,B, P ), then we say Xn → X almost surely (a.s.) if P {ω : Xn (ω)→ X (ω)} = 1.

Here is a another important kind of convergence.

Definition 2.8. If P {ω : |Xn (ω)−X (ω)| > ε} → 0 for all ε > 0, then we say
that Xn → X in probability.

Note. If we were donig analysis, we would say “almost everywhere” instead
of “almost surely” and “in measure” instead of “in probability.”
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Example 2.9. On {[0, 1] ,Borel sets,Lebesgue measure}, consider the sequence
of random variables

X1 = 1[0,1/2]

X2 = 1[1/2,1]

X3 = 1[0,1/4]

X4 = 1[1/4,1/2]

...

and so on. The Xn do not converge a.e. to anything (consider any non-dyadic
number in [0, 1]). But they do converge in probability to X ≡ 0, for

P {|Xn −X| > ε} ≤ 1
2k(n)

with k (n)→∞ as n→∞.

3. Product Spaces and Product Measures

This is important for studying independence in the abstract setting. Let
(Ω1,B1, P1), (Ω2,B2, P2) be probability spaces, and recall their Cartesian product
Ω = Ω1 × Ω2 is the set of (ω1, ω2) with ωi ∈ Ωi.

There is a natural way to construct a σ-field B and probability measure P
on Ω1 × Ω2, which is analogous to going from one-dimension Lebesgue measure
(length) on R1 to two-dimensional Lebesgue measure (area) on R2. The product
σ-field, B = B1×B2, is the σ-field generated by {A1 ×A2 : A1 ∈ B1, A2 ∈ B2} (the
measurable rectangles). Now we look to define a measure on B. Let F be the field
(not σ-field) of finite disjoint unions of the measurable rectangles. Then define P
on F by first setting

P (A1 ×A2) = P1 (A1) · P2 (A2)

for one measurable rectangle A1 × A2 and then extending via finite additivity to
all of F .

Lemma 3.1. P defined as above is countably additive on F .

Thus P extends uniquely to a probability measure on B, the product measure
P1 × P2. Furthermore, if A ∈ B (but not neccessarily in F), then P (A) can be
evaluated by interated integration (in either order). This is corollary 1.11 in the
text, and is a special case of (and leads to) the following theorem.

Theorem 3.2 (Fubini). If f (ω1, ω2) is a (real-valued) integrable function on
(Ω,B, P ) = (Ω1 × Ω2,B1 × B2, P1 × P2), then the function ω2 7→ f (ω1, ω2) is inte-
grable for a.e. ω1, the function ω1 7→

∫
Ω2
f (ω1, ω2) dP2 is integrable, and∫

Ω1×Ω2

f (ω1, ω2) dP =
∫

Ω1

[∫
Ω2

f (ω1, ω2) dP2

]
dP1.

Similarly, ∫
Ω1×Ω2

f (ω1, ω2) dP =
∫

Ω2

[∫
Ω1

f (ω1, ω2) dP1

]
dP2.

Remark. The converse holds for non-negative functions, a result due to Tonelli.
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4. Distributions and Expectations

Definition 4.1. Suppose (Ω1,B1, P ) is a probability space and (Ω2,B2) is a
measure space. If X : Ω1 → Ω2 is a Ω2-valued random variable, then Q defined by

Q (A) = P
(
X−1 (A)

)
for A ∈ B2 is a probability measure on (Ω2,B2), called the induced measure or the
distribution of X.

Note. In the analysis setting, one might see Q = PX−1. In the probability
setting, we can interpret Q (A) as the probability that X takes values in A.

Example 4.2. If X is real-valued ((Ω2,B2) = (R,Borel sets)), then Q is the
probability measure on R whose distribution function is

FQ (x) = Q ((−∞, x]) = P (X ≤ x) = FX (x) .

FX is the cumulative distribution function of X from classical probability. So the
distribution of a random variable (in the new sense) is just a generalization of
cumulative distribution to abstract probability space.

Theorem 4.3 (Change of Variables). If X is as in the above definition and
h is a real-valued measureable function on (Ω2,B2) then the function g given by
g (ω1) = h (X (ω1)) is a real-valued random variable on (Ω1,B1). g is integrable on
(Ω1,B1, P ) iff h is integrable on (Ω2,B2, Q) where Q is the distribution of X, and

E [g] = E [h (X)] =
∫

Ω1

h (X (ω1)) dP =
∫

Ω2

h (ω2) dQ.

Example 4.4. If X is real-valued, then we have the usual formula

E [h (X)] =
∫

Ω1

h (X (ω1)) dP =
∫

R
h (ω2) dQ =

∫ ∞
−∞

h (x) dFX (x)

with the Lebesgue-Stieltjes integral on the right.

Here is the situation thus far. If X is a real-valued random variable on (Ω,B, P ),
then it induces a measure α = PX−1 called the probability distribution of X. The
distribution function of X is then F (x) = α ((−∞, x]) = P (X ≤ x). And if X is
integrable, its expectation (mean) is

E [X] =
∫

Ω

X (ω) dP =
∫

R
x dα =

∫ ∞
−∞

x dF (x) .

Finally, if g an α-integrable real-valued function on R, then

E [g (X)] =
∫

Ω

g (X (ω)) dP =
∫

R
g (x) dα =

∫ ∞
−∞

g (x) dF (x) .

Definitions 4.5. The mth moment of X for m = 1, 2, 3, . . . is

E [Xm] =
∫

R
xm dα,

provided E [|X|m] =
∫

R|x|
m dα <∞. The variance of X is

Var (X) = E
[
(X − E (X))2

]
= E

[
X2
]
− (E [X])2

and the standard deviation of X is

σ (X) =
√

Var (X).



4. DISTRIBUTIONS AND EXPECTATIONS 13

Problem one on the second homework is to calculate the mean and standard
deviation of a “shuffling random variable”. Here is a hint.

Proposition 4.6. If X1, X2, . . . , Xn are integrable random variables then
∑
ciXi

is integrable and E [
∑
ciXi] =

∑
ciE [Xi].





CHAPTER 2

Weak Convergence

1. Characteristic Functions

Note. In probability, characteristic functions are not indicator functions.

Recall the following elementary facts about complex numbers:
• i2 = −1
• C = {a+ bi a, b ∈ R}
• eir = cos r + i sin r for r ∈ R.

Exercise 1.1. Define eir =
∑ (ir)n

n! . Prove the third fact using i2 = −1 and
Taylor series for cos r and sin r.

Definition 1.2. A complex-valued function f (ω) = a (ω) + ib (ω) is integrable
if a and b are integrable, and then∫

f (ω) dP =
∫
a (ω) dP + i

∫
b (ω) dP.

Thus if α is a probability measure on R, then for t ∈ R we have∫
R
eitx dα =

∫
R

cos tx dα+ i

∫
R

sin tx dα.

If α is the probability distribution of some real-valued random variable X, then
consider the complex-valued function

φ (t) =
∫

R
eitx dα =

∫ ∞
−∞

eitx dFX = E
[
eitx
]
.

Definition 1.3. The function φ above is called the characteristic function of
α (or of FX or of X).

Characteristic functions are important to many parts of this course. For exam-
ple, a standard proof of the central limit theorem is via characteristic functions.

Examples 1.4.
(1) If X has uniform distribution on [C,D], then∫

R
eitx dα =

∫ D

C

eitx
1

D − C
dx =

1
D − C

(
eitD − eitC

it

)
.

Note that

lim
t→0

1
D − C

(
eitD − eitC

it

)
= 1

as we expect (α is a probability measure). A special case is C = −1/2,
D = +1/2, for which ∫

R
eitx dα =

sin t
2

t
2

.

15
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(2) If X is Binomial(n, p), then

E
[
eitx
]

=
n∑
k=0

eitk
(
n

k

)
pk (1− p)n−k =

(
peit + (1− p)

)n
.

(3) If X is Poisson(λ), then

E
[
eitx
]

=
∞∑
k=0

eitke−λ
λk

k!
= eλ(e

it−1).

(4) If X is exponential with mean µ, then

E
[
eitx
]

=
1

1− iµt
.

(5) If X is Normal
(
µ, σ2

)
, then

E
[
eitx
]

= eiµt−
1
2σ

2t2 .

Exercise 1.5. Verify these calculations.

What is the relation between characteristic functions and moments? Formally,
by interchanging derivatives and integrals, we get

d

dt
φ (t) =

d

dt

∫
eitx dα =

∫
(ix) eitx dα

and by setting t = 0

φ′ (0) =
∫
ix dα = iE [X] .

More generally (
d

dt

)m
eitx
∣∣∣∣
t=0

= imxm

and so
φ(m) (0) = imE [Xm] ,

at least formally. When is this justified?

Proposition 1.6. If E [|X|m] < ∞, then φ is m-times (continuously) differ-
entiable and

φ(m) (0) = imE [Xm] .

Proof of this will be problem two on the second problem set. Also see exercises
2.2, 2.4 of the text.

What about a converse? If φ is m-times (continuously) differentiable, does this
imply that E [|X|m] <∞ and hence

E [Xm] =
1
im
φ(m) (0)?

The answer is yes for m even, but no for m odd. See exercise 2.3 of the text for the
details.Lecture 4, 9/27/11

Here is a classic theorem, which tells us how to determine if a complex-valued
function is the characteristic function of a random variable.

Theorem 1.7 (Bochner). A complex-valued function φ (t) is the characteristic
function of some α (or F or X) iff φ satisfies the following three properties:

(1) φ (0) = 1
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(2) φ is continuous (for all t)
(3) φ is positive (semi-)definite; i.e. for any n = 1, 2, 3, . . . and any real

t1, . . . , tn, the n× n matrix

(φ (ti − tj))ni,j=1

should be positive (semi-)definite (self-adjoint with all positive eigenval-
ues). Equivalently, given n ∈ N and t1, . . . , tn ∈ R, φ should satisfy

n∑
i,j=1

cicjφ (ti − tj) ≥ 0

for all complex c1, . . . , cn.

See the text for the proof; the only if part is easier. This next proposition is used
to finish the proof of the central limit theorem. Observe first that a distribution
function F is determined uniquely by its values at its continuity points (F is right-
continuous and increasing).

Proposition 1.8. A distribution α (or distribution function F ) is uniquely
determined by its characteristic function: if a, b are continuity points of F then

α ((a, b]) = F (b)− F (a) = lim
T→∞

1
2π

∫ T

−T

e−ita − e−itb

it
φ (t) dt.

See pp. 20-21 of the text for the proof.

Remark. Even if a, b are not continuity points, the limit above equals

α ((a, b)) +
1
2
α ({α}) +

1
2
α ({b}) .

This is consistent with the proposition.

2. Weak Convergence

We are working towards the central limit theorem, which is about the conver-
gence of distributions to the normal distribution. We need to reinterpret the word
“convergence” to acheive the theorem.

Theorem 2.1. Let αn, α be probability measures on R and let Fn, F be the
corresponding ditribution functions. The following are equivalent:

(1) limn→∞ Fn (x) = F (x) for every x that is a continuity point of F .
(2) αn ([a, b])→ α ([a, b]) as n→∞ for all a, b ∈ R which are not atoms of α

(i.e. α ({a}) , α ({b}) 6= 0).
(3) limn→∞

∫
R f (x) dαn (x) =

∫
R f (x) dα (x) for every bounded, continuous

(real/complex-valued) function f on R.

Remark. If Xn has distribution αn and X has distribution α, then (3) says
that E [f (Xn)]→ E [f (X)].

Definition 2.2. If αn, α (Fn, F ) satisfy any of the conditions above, we say
αn converges weakly to α, and we write αn ⇒ α (Fn ⇒ F ).

Theorem 2.3. αn ⇒ α iff the characteristic functions φn, φ satisfy limn→∞ φn (t) =
φ (t) for every real t.
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This last interpretation of weak convergence is used to prove the central limit
theorem.

Remarks.

(1) If Xn, X have distributions αn, α with αn ⇒ α, we say Xn converges in
distribution (in law) to X. As noted above, this means E [f (Xn)] →
E [f (X)] for any bounded, continuous f .

(2) (1) or (2) in theorem 2.1 can be strengthened to: αn (A) → α (A) for
every Borel set A so that α

(
A\A0

)
= 0. (This is theorem 2.6 in the text.)

Such a set A is called a continuity set of α.

Example 2.4. Here is a simple example. Take αn = δ1−1/n and α = δ1. Then
αn ⇒ α, but αn ({1}) = 0 for all n so that αn ({1}) 6→ α ({1}). Indeed, {1} is not
a continuity set of α (α

(
A\A0

)
6= 0).

Consider the proof of theorems 2.1 and 2.3. (1) =⇒ (3) is fairly straightforward
(see pp. 25-26 of the text). (3) =⇒ φn (t)→ φ (t) is trivial (take f (x) = eitx). The
interesting proof is that φn (t)→ φ (t) =⇒ (1), which follows from the next theorem.

Theorem 2.5. Suppose φn, n = 1, 2, . . . , are characteristic functions (of prob-
ability measures αn) and there exists a function φ so that φn (t)→ φ (t) for each t.
Suppose also that φ is continuous at t = 0. Then φ is a characteristic function of
some probability measure α, and αn ⇒ α.

Proof sketch. Part 1. (Steps 1-3 on pp. 26-27.) Let Fn be any sequence of
distribution functions, then there exists a subsequence nk and a “sub-distribution
function”G (G is non-decreasing, right-continuous, with values in [0, 1]; butG (−∞) >
0 and/or G (+∞) < 1 are allowed) such that Fnk (x) → G (x) at every continuity
point of G. Proof of this fact uses boundedness of {Fn (x)} for each x, count-
ability of the rationals, diagonalization, and so forth. In some books, this type of
convergence is called vague convergence.

Example 2.6. For αn = 2
3δ1 + 1

4δn + 1
12δ−n, Fn (x)→ G (x) with

G (x) =

{
1
12 x < 1
3
4 x ≥ 1

.

Part 2. (Steps 4-5 on pp. 27-28.) The key argument is to show that φ (t) is
continuous at t = 0 implies that G (−∞) = 0 and G (+∞) = 1. This follows from
the

Lemma 2.7. If F is a distribution function with characteristic function φ, then
for any T > 0 we have

1−
(
F

(
2
T

)
− F

(
− 2
T

))
≤ 2

(
1− 1

2T

∫ T

−T
φ (t) dt

)
.

This lemma is proved by elementary manipulations and Fubini’s theorem (see
p. 27 of the text). Applying the lemma to the Fnk and taking k → ∞ yields that
for small T such that ±2/T are continuity points of G,

1−
(
G

(
2
T

)
−G

(
−2
T

))
≤ 2

(
1− 1

2T

∫ T

−T
φ (t) dt

)
.
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This holds even though we don’t yet know G is a distribution function (so we don’t
know φ is a characteristic function). But we do know φ is continuous at t = 0 and
φ (0) = 1, so G (−∞) = 0 and G (+∞) = 1. So G is a distribution function.

Now we have a subsequence Fnk which converges to a distribution function G
at continuity points. By what we’ve already shown, φnk (t)→

∫
eitx dG for every t.

But since φnk (t) → φ (t), we have φ (t) =
∫
eitx dG. Now for any subsequence n′k,

by the same argument there exists a sub-subsequence n′kj so that Fn′kj converges

to a distribution function G′. But again φG′ = φG so that G′ = G and hence
Fn′kj

→ G. This implies Fn → G; now rename G as F to complete the proof.
�

The arguments used in this proof are interesting in their own right.

Definition 2.8. A collection A of probability distributions on R is called
totally bounded if there exists a probability distribution α so that every sequence
αn from A has a subsequence αnk ⇒ α.

Theorem 2.9. A family of probability distributions A is totally bounded iff
either of the following holds:

(1) The family is tight, i.e.

lim
l→∞

sup
α∈A

α ({x : |x| ≥ l}) = 0.

(2) Let φα be the characteristic function of α. Then

lim
h→0

sup
|t|≤h
|1− φα (t)| = 0.

That (1) and (2) are equivalent is the content of lemma 2.7. That (1) implies
A is totally bounded is part 1 of the proof of theorem 2.5. That (2) implies A is
totally bounded is part 2 of the proof of theorem 2.5. Lecture 5, 10/4/11





CHAPTER 3

Independent Random Variables

1. Independence and Convolution

Recall the notion of independent random variables from classical probability.
We need a more general definition to tackle the classic theorems of probability.

Definitions 1.1. A finite family of (real-valued) random variablesX1, X2, · · · , Xn

is independent (jointly independent) if

P (X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) = P (X1 ∈ B1) · · ·P (Xn ∈ Bn)

for B1, B2, . . . any Borel subsets of R. An infinite family of random variables
{Xα} is independent if every finite subfamily is. Events A1, A2, . . . are said to be
independent if their indicators are independent, or equivalently if

P (C1 ∩ C2 ∩ · · · ∩ Cn) = P (C1) · · ·P (Cn)

for each n and for every choice of Cj = Aj or (Aj)
c.

Note.

(1) For a pair of events A1, A2 it suffices to check

P (A1 ∩A2) = P (A1)P (A2) .

This is what is usually presented in a first course on probability.

Exercise 1.2. Prove this.

(2) It is possible for a family of events (or random variables) to be pairwise
independent but not (jointly) independent. See the next example.

Example 1.3. Fair coin tossing. Set

Xi =

{
+1 ith toss is heads
−1 ith toss is tails

,

then X1, X2 and Y = X1X2 are pairwise independent but not jointly independent.
It might seem non-intuitive that these are pairwise independent. But think of the
conditional distributions. This really shows independence is a statistical property
(and not a functional property).

Here is a second way to understand independence. Recall that if X1, . . . , Xn are
real-valued random variables on some (Ω,F, P ) we can regard X = (X1, . . . , Xn) as
an Rn-valued random variable whose distribution (the joint distribution ofX1, . . . , Xn

from elementary probability) is the measure µ on Rn so that µ (B) = P ({ω : X (ω) ∈ B}).
IfB is a rectangleB1×· · ·×Bn and ifX1, . . . , Xn are independent, then µ (B1 × · · · ×Bn) =
µ1 (B1) · · ·µn (Bn) where µi is the distribution (on R) of Xi. In this case, we write
µ = µ1 × · · · × µn. The converse is also true.

21
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Lemma 1.4. X1, . . . , Xn are independent iff the distribution of (X1, . . . , Xn) is
the product measure of the distributions of the individual Xis.

We’re working our way towards applying the theory to characteristic functions.
This will lead to the classic theorems. Here is a tool we’ll use quite often.

Proposition 1.5. Suppose f1, . . . , fn are (bounded) measurable functions on
R.1 If X1, . . . , Xn are independent (real-valued) random variables, then

E [f1 (X1) · · · fn (Xn)] = Πn
j=1E [fj (Xj)] .

Proof. Apply the above lemma and Fubini’s theorem. �

An important case of this is when fj (Xj) = eitjXj with real numbers tj and
j = 1, . . . , n. Then, the proposition implies

E
[
ei(t1X1+···+tnXn)

]
= Πn

j=1E
[
eitjXj

]
.

The object on the left is the (multivariate) characteristic function φ (t) = φ ((t1, . . . , tn))
of X = (X1, . . . , Xn). Of course this definition does not require independence. The
converse is also true (if the equality holds for all choices of tj , then X1, . . . , Xn are
independent).

In this course, we’ll mainly consider t = t1 = t2 = · · · = tn. In this case, we
see that if X1, . . . , Xn are independent, then the characteristic function of X =
X1 + · · ·+Xn is

φX1+···+Xn (t) = E
[
eit(X1+···+Xn)

]
= Πn

j=1E
[
eitXj

]
= Πn

j=1φXj (t) .

This is an important relation which we’ll use time and time again. But note that
even if the equality above holds for all t it may not be true that X1, . . . , Xn are
independent. (??)

The discussion above shows the utility of the characteristic functions. But in
practice, distributions are closer to what we’re actually interested in. So we ask: Is
there a representation for the distribution of sums of independent random variables?
The answer is yes, but unfortunately it’s not quite as nice. By Fubini’s theorem,
one has that for Z = X + Y (X,Y independent) and A any Borel subset of R,

µZ (A) =
∫

R
µX (A− y) dµY (y) =

∫
R
µY (A− x) dµX (x) .

This is called the convolution of µX and µY and is denoted by µX ? µY . If X,Y
have probability densities fX , fY , then Z also has a density fZ with

fZ (z) =
∫ ∞
−∞

fX (z − y) fY (y) dy =
∫ ∞
−∞

fY (z − x) fX (x) dx.

Here is a standard and useful fact for independent X,Y , which follow from the
relation E [XY ] = E [X]E [Y ]: If E

[
X2
]
, E
[
Y 2
]
<∞, then

Var (X + Y ) = Var (X) + Var (Y ) .

1The assumption that f1, . . . , fn are bounded can be weakened to E [|fj (Xj)|] < ∞ for each

j.
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For X1, . . . , Xn independent,

Var (X1 + · · ·+Xn) = Var (X1) + · · ·+ Var (Xn) .

Exercise 1.6. Derive these results.

Many of the standard limit theorems of probability theory (e.g. the Law of
Large Numbers, the Central Limit Theorem) concern sums of independent random
variables X1 + · · · + Xn as n → ∞. In order to make sense of these theorems, we
need to a probability space on which infinitely many independent random variables
X1, X2, . . . are defined (e.g. with some common prescribed distribution). This
comes from the classical sampling techniques from statistics.

Definition 1.7. If X1, X2, . . . are independent random variables which share
a common distributino, then they are said to be independent, identically distributed
(i.i.d.) random variables.

Example 1.8. Coin tossing where

Xj =

{
+1 jth toss is heads
−1 jth toss is tails

.

There is a general argument from measure theory that gives the existence of
such spaces.

Theorem 1.9. Let µ1, µ2, . . . be (Borel) probability measures on R, and let
Ω = {a = (x1, x2, . . . ) : xj ∈ R} be the space of infinite sequences of real numbers
(sometimes denoted R∞). Let F be the field of “finite dimensional cylinder sets”,
i.e. sets of the form {ω = (x1, x2, . . . ) : (x1, . . . , xn) ∈ A} for n ∈ N and A a Borel
subset of Rn. Let Σ be the σ-field generated by F. Then there exists a unique
probability measure µ = µ1 × µ2 × · · · on (Ω,Σ) such that

µ ({ω = (x1, x2, . . . ) : (x1, . . . , xn) ∈ A}) = (µ1 × · · · × µn) (A)

for any n ∈ N and any Borel subset A of R.

Remark.

(1) There is no convergence issue here. We’re working on a probability space.
(2) We could have defined µ via any choice of n coordinates from ω, instead

of just the first n. The result would be the same.

2. Weak Law of Large Numbers

Now we can consider i.i.d. random variables X1, X2, . . . and study the sam-
ple mean X1+···+Xn

n as n → ∞. We’ll begin with the weaker result, where we’ll
assuming not only that E (|X1|) < ∞ (so that E (X1) = m is defined) but also
that E

(
X2

1

)
< ∞ (finite variance). Write Sn = X1 + · · · + Xn. We first study

the weak law of large numbers, which claims that Sn
n → m in probability, i.e. that

P
(∣∣Sn

n −m
∣∣ > δ

)
→ 0 as n→∞.

Note. Usually convergence in probability and in distribution are not the same.
But since the convergence here is to a constant (and not an arbitrary random
variable), the weak law of large numbers equivalently claims that the distributions
of Sn

n converge in distribution to δm as n→∞.

Exercise 2.1. Check that αn ⇒ δ0 iff P (|Xn| > δ)→ 0 as n→∞.
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Later, we’ll see the strong law of large numbers, where the convergence is almost
surely. This takes much more work!

Recall the following result from measure theory.

Proposition 2.2 (Chebyshev’s Inequality). For any random variable X with
E
[
X2
]
<∞,

P (|X| > a) ≤ 1
a2
E
[
X2
]

for any a > 0.

Proof. We have

P (|X| > a) = E
[
1{|X|>a}

]
≤ E

[
X2

a2
1{|X|>a}

]
≤ 1
a2
E
[
X2
]

and so we’re done. �

Now apply this to X = Sn
n −m with a = δ to get

P

(∣∣Sn
n
−m

∣∣ > δ

)
≤ 1
δ2
E

[((
Sn
n

)
−m

)2
]

=
1
δ2

Var
(
Sn
n

)
=

1
δ2

Var
(
X1

n
+ · · ·+ Xn

n

)
=

1
δ2
n ·Var

(
X1

n

)
=

1
δ2

1
n
·Var (X1)

=
1
nδ2

σ2

→ 0

as n→∞. Note the second line follows as

m = E [X1] = E

[
X1 + · · ·+Xn

n

]
= E

[
Sn
n

]
.

So we have obtained a first weak law of large numbers. (See theorem 3.2 in the
text.)

Theorem 2.3. If X1, X2, . . . are i.i.d. with E [X1] , E
[
X2

1

]
< ∞ and m =

E [Xi], then Sn
n → m in probability as n→∞.

We can do better.

Theorem 2.4. If X1, X2, . . . are i.i.d. with E [|X1|] <∞ and m = E [Xi], then
Sn
n → m in probability as n→∞.

There are two proofs.



2. WEAK LAW OF LARGE NUMBERS 25

First proof. This proof is by a “truncation” argument. Given C > 0, define
XC
j = Xj · 1{|Xj |≤C} and Y Cj = Xj −XC

j = Xj · 1{|Xj |>C}. Then

Sn
n

=
1
n

n∑
j=1

XC
j +

1
n

n∑
j=1

Y Cj = ξCn + ηCn ,

and

m = E [X1]

= E

[
Sn
n

]
= E

[
XC

1

]
+ E

[
Y C1
]

= aC + bC

= E
[
ξCn
]

+ E
[
ηCn
]

we’re we’ve introduced ξCn , η
C
n and aC , bC for bookkeeping. To prove Sn

n → m it
suffices to show that E

[∣∣Sn
n → m

∣∣] → 0. (Follows from Chebyshev’s inequality.)
Write

E

[∣∣Sn
n
−m

∣∣] = E
[
|ξCn + ηCn − aC − bC |

]
≤ E

[
|ξCn − aC |

]
+

1
n

n∑
i=1

E
[
|Y Ci |+ |bC |

]
= E

[
|ξCn − aC |

]
+ E

[
|Y C1 |

]
+ |bC |

≤
(
E
[
|ξCn − aC |2

])1/2
+ 2 · E

[
|Y C1 |

]
since by Cauchy-Schwarz E [|W |] ≤

(
E
[
W 2
])1/2. Now

E
[
|ξCn − aC |2

]
= Var

(
ξCn
)

=
(

1
n

)2

n ·Var
(
XC

1

)
→ 0

as n→∞, so that

lim sup
n→∞

E

[∣∣Sn
n
−m

∣∣] ≤ 2 · E
[
|Y C1 |

]
.

Now we claim E
[
|Y C1 |

]
→ 0 as C → ∞. This follows from the dominated conver-

gence theorem since |X1| · 1{|X1|>C} → 0 almost everywhere. This completes the
proof. �

The idea of truncation will appear again when we prove the strong law of large
numbers. The second proof is completely different. It uses an important line of
reasoning that will show up time and time again (e.g. in the proof of the central
limit theorem).
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Second proof. Argue with characteristic functions. Let φ (t) = E
[
eitXj

]
(for any j), then set

ψn (t) = E
[
eit

Sn
n

]
= E

[
eit(

X1+···+Xn
n )

]
= · · ·

=
(
E
[
ei
tX1
n

])n
=
(
φ

(
t

n

))n
.

Since E [|X1| <∞], φ is differentiable with φ′ (0) = iE [X1] = im. So by Taylor
expansion,

φ

(
t

n

)
= 1 + im

t

n
+ o

(
1
n

)
.

Then

ψn (t) =
(

1 + im
t

n
+ o

(
1
n

))n
and the limit as n→∞ is the same as of

(
1 + im t

n

)n → eimt. But the characteristic
function of δm is eimt, and hence Sn

n ⇒ δm. �

We used the following result:

Lemma 2.5. If an is a sequence of complex numbers such that nan → z ∈ C
(i.e. an = z/n+ o (1/n)), then (1 + an)n → ez.

Lecture 6, 10/18/11

3. Strong Law of Large Numbers

The conclusion of the strong law of large numbers is that Sn
n → m almost surely.

To prove almost sure limits, a basic (and very important) tool is the Borel-Cantelli
lemma.

Lemma 3.1 (Borel-Cantelli). Let {An} be any sequence of events in some prob-
ability space (Ω,F , P ). If

∑∞
n=1 P (An) <∞, then

P ({An occurs for only finitely many n}) = 1

or equivalently
P ({An occurs infinitely often}) = 0

where {An occurs infinitely often} = {ω : ω ∈ An for infinitely many n’s}. Con-
versely, if the An are (mutually) independent events with

∑∞
n=1 P (An) =∞, then

P ({An occurs infinitely often}) = 1.

Note. Sometimes we write i.o. to mean “infinitely often”.

Proof. {An occurs i.o.} = ∩∞k=1 (∪∞n=kAn), a decreasing limit as k → ∞ of
the sets ∪∞n=kAn. So by countable additivity we have

P ({An occurs i.o.}) = lim
k→∞

P (∪∞n=kAn) ≤ lim
k→∞

∞∑
n=k

P (An) = 0

since
∑∞
n=1 P (An) <∞ by assumption.
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In the other direction, write

{An occurs for only finitely many n} = ∪∞m=1 (∩∞n=m (An)c) ,

which is an increasing limit as k →∞ of the sets ∩∞n=m (An)c. So

P ({An occurs for only finitely many n}) = lim
m→∞

P (∩∞n=m (An)c)

= lim
m→∞

Π∞n=mP ((An)c)

= lim
m→∞

Π∞n=m (1− P (An))

since by assumption the An are independent. Using the fact that 1 − x ≤ e−x for
x ≥ 0 (proof by calculus) we get

P ({An occurs for only finitely many n}) ≤ lim
m→∞

e−
P∞
n=m P (Am)

= lim
m→∞

0

= 0

and hence the claim. �

Exercise 3.2. Check the details of the proof by replacing Π∞n=mP ((An)c) with
Πl
n=mP ((An)c) and letting l→∞ in the end.

Now we are equipped to prove a first strong law of large numbers.

Theorem 3.3. If X1, X2, . . . are i.i.d. and E
[
(X1)4

]
< ∞, then Sn

n → m =
E (X1) almost surely.

Proof. By replacing Xi by Xi − m, we may assume that m = 0. To show
Sn
n → 0 almost surely, it suffices to show that for every δ > 0,

P

({∣∣Sn
n

∣∣ ≥ δ for only finitely many n
})

= 1

as {
ω :

Sn (ω)
n

→ 0
}

= ∩∞j=1

{
ω :
∣∣Sn
n

∣∣ ≥ 1
j

for only finitely many n
}
,

and as the events on the right form a decreasing sequence in j,

P

({
Sn
n
→ 0

})
= lim
j→∞

P

{∣∣Sn
n

∣∣ ≥ 1
j

for only finitely many n
}
.

Finally by Borel-Cantelli, it suffices to show
∑∞
n=1 P

(∣∣Sn
n

∣∣ > δ
)
<∞.

Since E [X1] = 0 and E
[
(X1)4

]
<∞, Chebyshev’s inequality with p = 4 yields

the estimate

P

(∣∣Sn
n

∣∣ > δ

)
≤ 1
δ4
E

[∣∣Sn
n

∣∣4] =
1

n4δ4
E
[
|Sn|4

]
.

So it will be enough to show E
[
|Sn|4

]
≤ B · n2 for some constant B. Write

E
[
|Sn|4

]
= E

[
(X1 + · · ·+Xn)4

]
= E

[
(X1)4 + · · ·+ (Xn)4 + 6 (X1)2 (X2)2 + · · ·+ 6 (Xn−1)2 (Xn)2

+ other terms like X1 (X2)2
X3 or X4 (X7)3 or X1X3X5X8

]
.
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Now E
[
(Xi)

4
]

= C < ∞ for all i, and E
[
(Xj)

2 (Xk)2
]

= E
[
(Xj)

2
]
E
[
(Xk)2

]
=

σ2 · σ2 = σ4 for j 6= k where σ2 = Var (X1) <∞ (since E [X1] = 0). On the other
hand, E

[
X1 (X2)2

X3

]
= E [X1]E

[
(X2)2

]
E [X3] = 0 and similarly all other such

terms have zero expectation. Thus

E
[
|Sn|4

]
= nC + 6

(
n

2

)
σ4 = nC + 3n (n− 1)σ4 ≤ B · n2

for some B <∞. This completes the proof. �

We want to claim the law of large numbers holds under weaker conditions.
First we’ll see some theorems about sums of independent (not neccessarily identi-
cally distributed) random variables Xj , which will say when

∑∞
j=1Xj is convergent

(almost surely). In order to do this, we need a technical lemma that improves the
Chebyshev inequality:

P ({|Sn| ≥ l}) ≤
E
(

(Sn)2
)

l2
.

Lemma 3.4 (Kolmogorov’s Inequality). Suppose X1, . . . , Xn are independent
with E

[
(Xj)

2
]

= (σj)
2
<∞ and E [Xj ] = 0 for all j. Let Tn (ω) = sup1≤k≤n|Sk (ω)|.

Then,

P ({Tn ≥ l}) ≤
E
(

(Sn)2
)

l2
.

The proof has an interesting structure, which shows up again in the study of
Markov chains and martingales.

Proof. This is a “stopping-time” argument. Consider the first “time” that
the sequence |S1|, |S2|, . . . is ≥ l, and define Ej to be the event that that time
is j. Explicitly we have E1 = {|S1| ≥ l}, E2 = {|S1| < l, |S2| ≥ l}, and so on.
Also, {Tn ≥ l} = ∪nk=1Ek and 1{Tn≥l} =

∑n
k=1 1Ek . Now it suffices to show that

P ({Tn ≥ l}) ≤ 1
l2E

[
(Sn)2 1{T≥l}

]
, and by our choice of Ek we have E

[
(Sn)2 1{T≥l}

]
=∑n

k=1E
[
(Sn)2 1Ek

]
. Now

P ({Tn ≥ l}) = E
[
1{Tn≥l}

]
=

n∑
k=1

E [1Ek ]

≤
n∑
k=1

1
l2
E
[
(Sk)2 1Ek

]
by our choice of Ek. Going forwards,

P ({Tn ≥ l}) ≤
n∑
k=1

1
l2
E
[(

(Sk)2 + (Sn − Sk)2
)

1Ek
]

=
n∑
k=1

1
l2
E
[(

(Sn)2 − 2Sk (Sn − Sk)
)

1Ek
]
.
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But observe
E [Sk (Sn − Sk) 1Ek ] = E [Sk1Ek ]E [Sn − Sk] = 0

by independence and since E [Xj ] = 0 for all j. So we’ve shown

P ({Tn ≥ l}) ≤
n∑
k=1

1
l2
E
[
(Sn)2 1Ek

]
,

and hence the result. � Lecture 7, 10/31/11
Now we have Kolmogorov’s two- and three-series theorems. These important

results describe the convergence of independent series of random variables.

Theorem 3.5 (Kolmogorov’s two-series theorem). Suppose X1, X2, . . . (on
some (Ω,F , P )) are independent. If

∑∞
i=1E [Xi] and

∑∞
i=1 Var (Xi) are conver-

gent, then the series
∑∞
i=1Xi (ω) converges almost surely.

Remark. The two-series theorem gives a sufficient condition for almost sure
convergence of series of independent r.v.s. The next theorem (the three-series the-
orem) will give a neccesary condition.

Example 3.6. Recall from calculus that
∑∞
n=1 1/ns < ∞ iff s > 1. But∑∞

n=1 (−1)n /ns < ∞ converges for s > 0. What if one takes random signs? Let
Y1, Y2, . . . be independent with P (Yn = +1) = 1/2, P (Yn = −1) = 1/2 (e.g. fair
coin-tossing). Does

∑∞
n=1 Yn/n

s converge? The intuitive answer is that we still
get enough cancellation to allow convergence. By the two-series theorem, the series
converges a.s. for s > 1/2. Indeed, if we define Xn = Yn/n

s, then E [Xn] = 0
and Var (Xn) = 1/n2s so that

∑∞
n=1 Var (Xn) < ∞ if 2s > 1. After we prove the

three-series theorem, we’ll be able to say that
∑∞
n=1Xn is a.s. not convergent for

s ≤ 1/2.

Proof. First, assume E [Xi] = 0 for all i. To show a.s. convergence, it suffices
to prove for all δ > 0,

lim
m,n→∞

P

(
sup

m<k≤n
|Sk − Sm| ≥ δ

)
= 0

where Sk = X1 + · · · + Xk. By Kolmogorov’s inequality applied to the random
variables Xm+1, Xm+1 +Xm+2, . . . , Xm+1 + · · ·+Xn,

P

(
sup

m<k≤n
|Sk − Sm| ≥ δ

)
≤ 1
δ2

Var (Xm+1 + · · ·+Xn)

=
1
δ2
·

n∑
i=m+1

Var (Xi)

→ 0

as m,n→∞.
If the means are non-zero, define Yi = Xi−E [Xi] so that Xi = Yi+E [Xi] with

E [Yi] = 0. Then apply the previous result to the Yis and use that
∑
iE [Xi] <∞.

�

Suppose now we have independent Xi’s to which the two-series theorem does
not apply. Note that if

∑
i Var (Xi) < ∞ but

∑
iE [Xi] is divergent, we can

still apply the two-series theorem to Yi = Xi − E [Xi] and argue that
∑
iXi =∑

i (Yi + E [Xi]) is divergent. But suppose
∑
i Var (Xi) = +∞. We can then try a
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truncation argument, letting Yi = Xi ·1{|Xi|≤C} with C a fixed constant. If the two-
series theorem works for the Yis, and if

∑∞
i=1 P (Xi 6= Yi) =

∑∞
i=1 P (|Xi| > C) <

∞, then the Borel-Cantelli lemma implies P (Xi = Yi for all but finitely many i) =
1. And then

∑
iXi converges a.s. because

∑
i Yi does. This proves half of the next

theorem.

Theorem 3.7 (Kolmogorov’s three-series thereom). Let X1, X2, . . . be inde-
pendent random variables, and let C > 0. Then

∑
iXi converges almost surely

iff
(1)

∑
i P (|Xi| > C) <∞,

(2)
∑
iE
[
Xi · 1{|Xi|≤C}

]
<∞, and

(3)
∑
i Var

(
Xi · 1{|Xi|≤C}

)
<∞.

We already proved sufficiency; for necessity, see the text.

Remark. It seems strange that we can take any C > 0 in the theorem above,
for the series of truncated variables that result are different for different Cs. But as
asserted above, they converge simultaneously. Sometimes we can make problems
easier by choosing the right C.

Now we state and prove the strong law of large numbers.

Theorem 3.8 (Strong law of large numbers). If X1, X2, . . . are i.i.d. with
E [|X1|] <∞, then X1+···+Xn

n → E [X1] almost surely.

Proof sketch. There are several steps.
(1) W.l.o.g., assume E [X1] = 0.
(2) Let Yn = Xn · 1{|Xn|≤n} and bn = E [Yn]. Since E [|X1|] < ∞, we

get
∑
n P (|X1| > n) < ∞. As P (|X1| > n) = P (|Xn| > n), we get∑

n P (|Xn| > n) < ∞ and hence
∑
n P (Xn 6= Yn) < ∞. So by Borel-

Cantelli, P (Xn 6= Yn only finitely often) = 1. Thus if
∑
n
Yn−bn
n con-

verges a.s., then so does
∑
n
Xn−bn

n .
(3) Since E [Xn] = 0, bn − E [Xn] = bn = E

[
|X1| · 1{|X1|>n}

]
→ 0 as n→∞

because E [|X1|] <∞. (This is by the dominated convergence theorem.)
(4) An elementary lemma about infinite series says that

∑
n
Xn−bn

n < ∞
implies (X1−b1)+···+(Xn−bn)

n → 0. Since bn → 0 implies b1+···+bn
n → 0, we

conclude X1+···+Xn
n → 0 as desired.

(5) It remains to show
∑
n
Yn−bn
n < ∞. This is an application of the Ko-

mogorov three-series theorem. Conditions (1) and (2) in the theorem are
immediate. Showing (3) requires an estimate based on the assumption
that E [|X1|] <∞.

�

4. Kolmogorov’s 0-1 Law

Consider random variables X1, X2, . . . on the infinite product space (Ω,B, P ) =
Π∞i=1 (R,Borel sets, µi).

Definitions 4.1. Let Bn be the σ-field generated by all events of the form
{Xj ∈ D} for j ≥ n where D is any Borel set. Then Bn is called the σ-field
generated by Xn, Xn+1, . . . , or the future σ-field from time n. The tail σ-field B∞
is the σ-field B∞ = ∩∞n=1Bn. Elements of B∞ are called tail events.
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One way to think about the future σ-field is to notice that if F ∈ Bn, then the
definition of F does not depend on X1, . . . , Xn−1. Similarly if F ∈ B∞, then F
does not depend on any finite collection of Xis.

Example 4.2. Let ω = (ω1, ω2, . . . ) and Xn (ω) = ωn. The events

E1 =
{
ω : lim sup

n→∞
Xn (ω) ≥ 5

}
,

E2 =
{
ω : lim

n→∞

X1 (ω) + · · ·+Xn (ω)
n

= 2
}

are tail events.

Theorem 4.3 (Kolmogorov’s 0-1 law). If X1, X2, . . . are independent and A
is a tail event, then either P (A) = 0 or P (A) = 1.

Example 4.4. Consider the tail event E2 from the previous example, and
suppose the Xi are i.i.d. events. Then if E [X1] = 2, the strong law of large
numbers says P (E2) = 1. And if E [X1] 6= 2, the strong law of large numbers says
P (E2) = 0. This agrees with the result of the Kolmogorov 0-1 law.

Proof. The idea is to show that A is independent of A, since then P (A) =
P (A ∩A) = P (A)·P (A) and so (P (A))2−P (A) = 0. Hence P (A) (P (A)− 1) = 0
and hence P (A) = 0 or P (A) = 1.

Let Bn be the σ-field generated by X1, . . . , Xn. A ∈ B∞ implies A is indepen-
dent of every event in Bn for every n. Let A = {events that are independent of A},
then A is a monotone class (closed under increasing/decreasing limits). Since A
contains each of the fields ∪nBn, it contains the whole σ-field B on the infinite
product space. In particular we have A ∈ A, so A is independent of itself. �

Lecture 8, 11/1/11
Here are some more examples of tail events:

Examples 4.5. Let {Xi} be a sequence of independent events.
(1)

{
ω : limn→∞

1
n (
∑
Xi (ω)) ≤ 3

}
is a tail event.

(2)
{
ω : lim supn→∞

1√
n log logn

(
∑n
i=1Xi (ω)− na) = b

}
is a tail event. Here

a, b are constants.
(3) In fact, {ω : limn→∞Xi (ω) exists} is a tail event. In most cases, this

event has probability zero. The degenerate case is when the distributions
approach a point mass.

(4)
{
ω : supn

1
n

∑n
i=1Xi (ω) ≤ 3

}
is not a tail event.

5. Central Limit Theorem

Let X1, X2, . . . be i.i.d. r.v.’s and let Sn = X1 + · · · + Xn be the nth partial
sum. Our best law of large numbers says that if µ = E [|X1|] <∞, then Sn/n→ µ
with probability one. We can reinterpret this as saying 1

n (Sn − nµ) → 0 with
probability one. This suggests the question: how fast does 1

n (Sn − nµ) tend to

zero? The central limit theorem gives an answer, at least when E
[
(X1)2

]
< ∞.

Then, as we’ll see, 1
n (Sn − nµ) → 0 roughly like order 1/

√
n. More precisely, the

distribution of
√
n
n (Sn − nµ) = 1√

n
(Sn − nµ) does not tend to δ0 as n→∞ (except

in the trivial case where the common distribution of the Xis is δµ).
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Theorem 5.1 (Central limit theorem). Let X1, X2, . . . be i.i.d. r.v.’s with
E
[
(X1)2

]
< ∞ and call µ = E [X1]. Then the distribution of 1√

n
(Sn − nµ)

converges weakly to the normal distribution with mean zero and variance σ2 =
E
[
(X1 − µ)2

]
= Var (X1).

Remark. In the nontrivial case σ 6= 0, we can read the theorem as saying

P

(
Sn − nµ√

n
≤ u

)
→
∫ u

−∞

1√
2πσ

e−
x2

2σ2 dx

for every u ∈ R.

Proof. The proof is an exercise in characteristic functions. Recall that
(1) The characteristic function of a normal r.v. W with mean µ and variance

σ2 is ψ (t) = E
[
eitW

]
= eiµt−

1
2σ

2t2 .
(2) Distributions of r.v.’s Wn converge weakly to the distribution of W iff

ψn (t) = E
[
eitWn

]
→ ψ (t) = E

[
eitW

]
for all real t.

(3) If Y1, Y2, . . . , Yn are independent, then E
[
eit(α1Y1+···+αnYn)

]
= Πn

i=1E
[
ei(αit)Yi

]
.

(4) If E
[
Y 2
]
<∞, then

E
[
eitY

]
= 1 + itE [Y ] +

(it)2

2
E
[
Y 2
]

+ o
(
t2
)

= 1 + iE [Y ] t−
E
[
Y 2
]

2
t2 + o

(
t2
)

as t → 0. See exercise 2.4 in the text; see also the second proof of the
weak law of large numbers (theorem 2.4).

Now the proof. By (1) and (2), we only need to prove that E
[
e
it 1√

n
(Sn−nµ)

]
→

e−
1
2σ

2t2 for all t ∈ R. To study 1√
n

(Sn − nµ) = 1√
n

∑n
i=1 (Xi − µ), let Yi = Xi− µ

and note that E [Yi] = E [Xi]−µ = 0 and E
[
(Yi)

2
]

= Var (Xi) = σ2. Then by (3),

E
[
e
it 1√

n
(Sn−nµ)

]
= E

[
e
it

Pn
i=1

Yi√
n

]
= Πn

i=1E
[
e
it Y i√

n

]
=
(
φ

(
t√
n

))n
where φ (t) = E

[
eitY1

]
. Finally by (1),

φ (t) = 1− σ2

2
t2 + o

(
t2
)

as t→ 0, so for fixed t ∈ R[
φ

(
t√
n

)]n
=
[
1− σ2

2
t2

n
+ o

(
t2

n

)]n
=
[
1− σ2

2
t2

n
+ o

(
1
n

)]n
→ e−

1
2σ

2t2

by lemma 2.5. This completes the proof. �
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There are a variety of extensions of the central limit theorem. In what follows
we’ll assume X1, X2, . . . are independent with E

[
X2
i

]
< ∞, but not that they

are identically distributed. To simplify the discussion, let’s assume E [Xi] = 0
for all i so that Var (Xi) = E

[
X2
i

]
. (Of course, we can always replace Xi by

Yi = Xi − E [Xi] to get to this case.) Let Sn = X1 + · · · + Xn and let s2
n =

Var (Sn) =
∑n
i=1 Var (Xi) =

∑n
i=1 σ

2
i . In the i.i.d. case, σ2

n = nσ2 and the central
limit theorem says (for σ2 6= 0) that Sn/sn → N (0, 1) in distribution.2 In the
extended setting, can we conclude Sn/sn → N (0, 1) in distribution? The next
example shows we need some more assumptions.

Example 5.2. Let X ′1, X
′
2, . . . be i.i.d. and (to be concrete) with values ±1

with probability 1/2. Let Xj = σjX
′
j with

∑∞
j=1 σ

2
j < ∞ (e.g. with σj = j−2).

Then by the Komogorov 2- or 3-series theorem, since s2
n =

∑n
j=1 Var (Xj) =∑n

j=1 σ
2
2 → s2

∞ =
∑∞
j=1 σ

2
j < ∞ we have that Sn →

∑∞
j=1 σjX

′
j a.s. and so

Sn/sn → 1
s∞

∑∞
j=1 σjX

′
j a.s. and hence also in distribution. But this limit is not

N (0, 1)-distributed.
There are (at least) two ways to see why the limit is not N (0, 1)-distributed.

The first is to consider the characteristic function of the limit. The second is to
observe that in the σj = j−2 case, the limit is a bounded random variable.

The example above went wrong because
∑∞
j=1 σ

2
j < ∞. So it seems we (at

least) need to assume
∑∞
j=1 σ

2
j =∞. Is this enough?

Example 5.3. Let

Xj =


+j with probability pj/2
−j with probability pj/2
0 with probability 1− pj

.

Then σ2
j = E

[
(Xj)

2
]

= j2pj . Suppose
∑∞
j=1 j

2pj =∞ but also that
∑∞
j=1 Pj <∞

(e.g. pj = j−2). Then by Borel-Cantelli (or the 3-series theorem),
∑∞
j=1Xj is a.s.

convergent, since it is a.s. a finite sum. So Sn/sn → 0 a.s. and therefore not to
N (0, 1) in distribution.

The problem in the example above is that although s∞ =
∑∞
j=1 σ

2
j = ∞,

the main contribution to sn =
∑n
j=1 σ

2
j comes from very large values of Xj . To

avoid this phenomenon, one imposes the “Lindeberg condition”: If αi denotes the
distribution of Xi, we require

1
s2
n

n∑
i=1

∫
|x|≥ε·sn

x2 dαi → 0

for every ε > 0. This says that the contribution to the variance from very large
values of Xj is negligible. (Recall for E [Xi] = 0, Var (Xi) =

∫
R x

2 dαi.) As we’ll
see, Lindeberg’s condition plus the requirement that sn →∞ are enough to imply
that Sn/sn → N (0, 1) in distribution. Lecture 9, 11/8/11

Theorem 5.4 (Lindeberg’s CLT). Let X1, X2, . . . be independent with E [Xj ] =

0 and E
[
(Xj)

2
]

= Var (Xj) = σ2
j < ∞ and let Sn = X1 + · · · + Xn and s2

n =

2N (0, 1) means the standard normal distribution, with mean 0 and variance 1.



34 3. INDEPENDENT RANDOM VARIABLES

σ2
1 + · · ·+ σ2

n = Var (Sn). Then Sn/sn ⇒ N (0, 1) if sn →∞ and if for all ε > 0,

(5.1)
1
s2
n

n∑
j=1

E
[
X2
j · 1{|Xj/sn|>ε}

]
→ 0

as n→∞.

Remark. Condition (5.1) is called the Lindeberg condition.

Proof. We have Sn
sn

= X1
sn

+ · · ·+ Xn
sn

and suppose Xj/sn has the characteristic
function φn,j . ({φn,j} is an example of a triangular array.) We need to show
Πn
j=1φn,j (t)→ e−t

2/2 as n→∞ for any fixed t ∈ R. The trick: as φn,j (t) is close
to 1 for large n (by the Lindeberg condition), write

φn,j (t) = (1 + (φn,j (t)− 1)) = eφn,j(t)−1 +O (φn,j (t)− 1)2

as n → ∞. So replace φn,j with ψn,j (t) = eφn,j(t)−1; one can show it suffices to
prove Πn

j=1ψn,j (t) = e
Pn
j=1(φn,j(t)−1) → e−t

2/2, or equivalently

Kn =
n∑
j=1

(
φn,j (t)− 1 +

σ2
j t

2

2s2
n

)
→ 0

for all t.
Observe that

|Kn| ≤
n∑
j=1

∣∣E [eitXj/sn − 1 +−itXj

sn
+
t2

2
(Xj)

2

s2
n

]∣∣,
since E [Xj ] = 0 for all j. Now we’ll write each term as an integral w.r.t. αj , the
distribution of Xj , break up the integral according to where |x| < εsn and |x| ≥ εsn
(with ε < 1), and use the bounds

|eir − 1− ir +
r2

2
| ≤

{
C|r|3 |r| < t

C̃|r|2 otherwise

with r = tx/sn. So

|Kn| ≤ Ct3
n∑
j=1

∫
{|x|<εsn}

|x|3

s3
n

dαj + C ′t2
n∑
j=1

∫
{|x|≥εsn}

x2

s2
n

dαj

= I + II.

Notice the Lindeberg condition says exactly that II → 0. And∫
{|x|<εsn}

|x|3

s3
n

dαj =
∫
{|x|<εsn}

ε
|x|2

s2
n

dαj

≤ ε
∫

R

x2

s2
n

dαj

= ε
σ2
j

s2
n

which gives |Kn| ≤ εCt3 after summing on j. Thus lim supn→∞|Kn| ≤ Dε for all
ε > 0, and so limn→∞|Kn| = 0. This completes the proof. �
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6. Triangular Arrays and Infinite Divisibility

The proof of the Lindeberg CLT used an example of a triangular array. Here
is another example.

Example 6.1. Binomial approximation of the Poisson distribution. Let Sn be
the number of successes in n independent trials with probability pn of success on
each trial.

Claim. If npn → λ ∈ (0,∞), then Sn ⇒ Poisson (mean λ).

Proof. (By characteristic functions.) Write Sn = Xn,1 + · · ·+Xn,n with Xn,j

independent Bernoulli variables with parameter pn. Then

E
[
eitSn

]
=
(
E
[
eitX1,n

])n
=
(
(1− pn) + pne

it
)n

=
(
1 + pn

(
eit − 1

))n
=
(

1 +
λ

n

(
eit − 1

)
+ o

(
1
n

))n
→ eλ(e

it−1)

which is the characteristic function of Poisson (λ). Hence the claim. �

Now we have two examples of triangular arrays, one in which we get a normally
distributed limit and one in which we get a Poisson limit. This is the beginning of
the theory of triangular arrays.

Definition 6.2. A triangular array consists of random variables

X1,1, . . . , X1,k1

X2,1, . . . , X2,k2
...

Note. Often kn = n.

We’ll consider the case where the random variables in each row are independent,
and ask whether Sn = Xn,1 + · · ·+Xn,kn has a limiting distribution as n→∞.

Examples 6.3.
(1) In Lindeberg CLT, kn = n, Xn,j = Xj/sn, and the limit is N (0, 1).
(2) In the binomial approximation of the Poisson distribution, kn = n,

Xn,j =

{
1 probability pn
0 probability (1− pn)

,

and the limit is Poisson (λ).

Besides independence in each row, we want no individual summand to con-
tribute too much (as n→∞). So we’ll assume that for all δ > 0,

sup
1≤j≤kn

P (|Xn,j | ≥ δ)→ 0

as n→∞. This condition is called uniform infinitesimality or unifomly asymptoti-
cally negligible, and is analogous to the Lindeberg condition (which says individual
summands do not contribute too much to the variance).

Through all of this, we seek to answer the questions:
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(1) What kinds of limits arise?
(2) How do we determine which limiting distribution occurs?

We start to answer (1) by defining a class of random variables (or distributions).

Definition 6.4. A random variable Y (or its distribution) is called infinitely
divisible if for every n there exsit i.i.d. random variables Xn,1, . . . , Xn,n so that∑n
j=1Xn,j has the same distribution as Y .

Note. An equivalent definition says that for each n there is a characteristic
function φn so that (φn (t))n = E

[
eitY

]
for all t ∈ R. Note, however, that the nth

root of a characteristic function is not always a characteristic function.

Examples 6.5.

(1) The characteristic function of the Poisson distribution is φ (t) = eλ(e
it−1).

Notice φn (t) = e
λ
n (eit−1) is the characteristic function of the Poisson

distribution with mean λ/n, and (φn)n = φ so the Poisson distribution is
infinitely divisible.

(2) The characteristic function of the normal distribution is

φ (t) = eiµt−
σ2
2 t

2
=
(
ei
µ
n t−

σ2
n
t2
2

)n
.

So the normal distribution is infinitely divisible.
(3) The symmetric stable distribution has characteristic function

φ (t) = e−c|t|
α

=
(
e−

c
n |t|

α
)n

.

So it is infinitely divisible as well.

As it turns out, the set of infinitely divisible distributions is the answer to
(1). Moreover, there is an explicit representation of the characteristic functions of
infinitely divisible distributions due to Levy and Khinchine. But first, we’ll discuss
an important example.

Definition 6.6. Let X1, X2, . . . be i.i.d. with common distribution α, and let
N be Poisson (λ) and independent of the Xjs. (All the r.v.s are defined on the
same probability space.) Then the random variable Y = X1 + · · ·+XN is called a
compound Poisson distribution.

This is a particular example of a sum of a random number of i.i.d. random
variables.

Example 6.7. Let N be the number of mortgage defaults in a certain time
period to a certain mortgage provider. Let Xi be the dollar amount of the ith
default. Then Y is the total amount of all defaults in that time period.
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Let’s compute the characteristic function of a compound Poisson Y . We have

E
[
eitY

]
=
∞∑
k=0

E
[
eitY · 1{N=k}

]
=
∞∑
k=0

E
[
eit

Pk
j=1Xk · 1{N=k}

]
=
∞∑
k=0

E
[
eit

Pk
j=1Xk

]
E
[
1{N=k}

]
=
∞∑
k=0

P ({N = k}) ·
(
E
[
eitX1

])k
=
∞∑
k=0

e−λ
λk

k!
(φα (t))k

= eλ(φα(t)−1)

= e
R

R(eitx−1)λ dα(x)

= e
R

R\{0}(eitx−1) d[λα](x).

Notice we can replace λα by any positive, finite measure M on R\ {0}. So this
distribution is infinitely divisible, for

eλ (α) = E
[
eitY

]
= e

R
R\{0}(eitx−1) dM(x) =

(
e

R
R\{0}(eitx−1) d[Mn ](x)

)n
for all n.

Proposition 6.8. If Y and Z are independent and infinitely divisible, then
Y + Z is infinitely divisible.

So by adding a compound Poisson r.v. and a normal r.v., we get an infinitely
divisible random variable with characteristic function

E
[
eitX

]
= exp

[∫ (
eitx − 1

)
dM (x) + iat− σ2t2

2

]
where M is any finite measure on R\ {0}. This is a large class of infinitely divisible
random variables. Can it be extended? First, define

θ (x) =


x |x| ≤ 1
1 x > 1
−1 x < 1

.

(Alternatively we could use θ̃ (x) = x/ (1 + x)2.) Then rewrite E
[
eitX

]
as

(6.1) E
[
eitX

]
= exp

[∫ (
eitx − 1− itθ (x)

)
dM (x) + ia′t− σ2t2

2

]
.

Proposition 6.9. The limit of infinitely divisible characteristic functions is
an infinitely divisible characteristic function.

From this we conclude that M need not be a finite measure near the origin, as
long as it integrates against eitx − 1− itθ (x) ∼ Cx2 for small x.
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Definition 6.10. An admissible Levy measure is a (possibly infinite) positive
measure M on R\ {0} so that

•
∫
|x|>ε dM <∞ for all ε > 0,

•
∫
|x|<K x

2 dM <∞ for all K > 0.

Note. These two conditions are equivalent to
∫
θ̃ dM =

∫
x2

1+x2 dM (x) <∞.

Theorem 6.11 (Levy-Khintchine). X is infinitely divisible iff (6.1) holds with
a ∈ R, σ2 ≥ 0, and M admissible.

Lecture 10
11/15/11 Remark. If M is a measure with finite total mass, then the integral term is

exactly compound Poisson. The theorem allows mass to collect at 0 in the limit
(but not so much that x2 is not integrable). The term θ (x) ensures the integrand
is quadratic near the origin and bounded near infinity.

Example 6.12. The measure

dM (x) =
c

|x|1+α
dx

is a Levy measure for 0 < α < 2.

Exercise 6.13. Take σ = 0 in the example above. Then the term itθ (x)
is unneccesary in the integral. Show that the resulting distributions for varying
0 < α < 2 are symmetric stable distributions.

We’ll denote by e
(
M,σ2, a

)
the probability measure with characteristic func-

tion given by (6.1). The next theorem says that the set of distributions arising
from triangular arrays with uniform infinitesimality is exactly the set of infinitely
divisible distributions. It is taken from Frustedt-Gray, and combines the results of
sections 3.7, 3.8 in that text.

Theorem 6.14. Let (Xn,j : 1 ≤ j ≤ kn) be a triangular array that is indepen-
dent in each row and uniformly infinitesimal, i.e. suppose

sup
1≤j≤kn

P (|Xn,j | ≥ δ)→ 0

for all δ > 0. Then if Sn =
∑n
i=1Xn,kn converges in distribution, the limit must

be infinitely divisible. In order that the limit is e
(
M,σ2, a

)
, it is neccesary and

sufficient that:
(1) For every bounded continuous function f which vanishes in a neighborhood

around zero,
kn∑
j=1

E [f (Xn,j)]→
∫
f dM.

(2) Let

σεn =

√√√√ kn∑
j=1

Var
(
Xn,j · 1{|Xn,j |≤ε}

)
,

then σ is given by

lim
ε→0

lim sup
n→∞

σεn = lim
ε→0

lim inf
n→∞

σεn = σ.
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(3) a is given by

lim
n→∞

kn∑
j=1

E [θ (Xn,j)] = a.

Remark. The main idea of the proof is to replace the distribution αn,j by the
infinitely disivible distribution e

(
α′n,j , 0, a

′′
n,j

)
. Here, α′n,j is αn,j with centering

and a′′n,j is chosen to compensate for the centering. It turns out this produces the
same limit, but computation is much easier with infinitely divisible distributions.

7. Law of the Iterated Logarithm

In this section we’ll arrive at a fine (and technical) peice of information about
sums of random variables, which will help to explain the relation between limits
of distributions and almost sure limits. Let X1, X2, . . . be i.i.d. with E [Xi] = 0,
E
[
(Xi)

2
]

= 1, and let Sn = X1 + · · · + Xn. Then Sn/n → 0 almost surely while

Sn/
√
n⇒ N (0, 1). Does Sn/

√
n have an almost sure limit? The answer is no.

Lemma 7.1. Define Z (ω) = lim supn→∞ Sn (ω) /
√
n, then Z (ω) = +∞ almost

surely.

Proof. Z is measurable w.r.t. the tail field. So Kolmogorov’s 0-1 law implies
that for any a, P (Z ≥ a) is either zero or one. But we can’t have P (Z ≥ a) = 0
for any a <∞, for if so then Sn/

√
n ≤ 2a for all large n with probability one, and

then P (Sn/
√
n ≤ 2a)→ 1. This violates the central limit theorem. �

Remarks.

(1) At first glance, the lemma looks like it contradicts the central limit the-
orem. But the central limit theorem implies that for some large n (not
depending on ω) Sn/

√
n ≥ 100 with very small probability, approximately∫∞

100
1√
2π
e−x

2/2 dx. The above lemma says that given ω, we can find a se-

quenceNj (depending on ω) going to infinity such that SNj (ω) /
√
Nj (ω) ≥

100. These are different questions. The central limit theorem says that
the Nj ’s are sparse as j →∞, but the lemma says they still exist.

(2) Replacing Xj by −Xj in the lemma shows that lim infn→∞ Sn/
√
n = −∞

almost surely.

The lemma says supm≤n {Sm/
√
m} → +∞ almost surely. How fast does this

happen? The law of large numbers implies that this must diverge slower than
√
n.

In fact, it diverges very very slowly, like
√

log log n.

Theorem 7.2 (Law of the Iterated Logarithm). Let Xi be i.i.d. with E [Xi] = 0
and E

[
(Xi)

2
]

= 1. Then,

lim sup
n→∞

Sn√
n
√

log log n
=
√

2

lim inf
n→∞

Sn√
n
√

log log n
= −
√

2

almost surely.
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Proof sketch. We can get the second limit by replacing Xj with −Xj . So
we’ll only prove the first limit. As in the text, we’ll assume that E

[
|X|2+α

]
< ∞

for some α > 0. There are two parts.
Part I. Give the proof for the special case where the Xi are normal. Normality

is only used to show that for Sn/
√
n standard normal and a > 0,

(1) For p < a2/2, there exists Cp <∞ so that

P

(
Sk√
k
≥ a

√
log log k

)
≤ Cp (log k)−p

for all large k.
(2) For p > a2/2, there exists C ′p <∞ so that

P

(
Sk√
k
≥ a

√
log log k

)
≥ C ′p (log k)−p

for all large k.

These are precise estimates on the tail of the standard normal distribution.
Part II. Extend the proof to general distributions. Show that the estimates

above are approximately correct with errors small enough to make no difference
in the Borel-Cantelli arguments used in part I. The approximate validity of the
estimates follows from an interesting extension of the central limit theorem, due to
Berry and Esseen. See the following theorem.

We’ll discuss part I now. Define φ (n) =
√
n log log n, we need to show

Iupper : lim sup
n

Sn
φ (n)

≤
√

2

Ilower : lim sup
n

Sn
φ (n)

≥
√

2

almost surely. For both, consider blocks of Sj ’s for j between kn−1 and kn with
kn ≈ ρn with n > 1 (so the blocks become large). Suppose we can show that for
any λ >

√
2,

(7.1)
∞∑
n=1

P

(
sup

kn−1≤j≤kn
Sj ≥ λφ (kn−1)

)
<∞.

Then by Borel-Cantelli,

lim sup
n→∞

supkn−1≤j≤kn Sj

φ (kn−1)
≤ λ

almost surely. Since φ (n) is increasing in n, this implies that

lim sup
n→∞

Sn
φ (n)

≤ λ

as desired. By the inequality of problem two, problem set eight (see p. 67), we can
replace (7.1) by

∞∑
n=1

P
(
Skn ≥ λ̃φ (kn−1)

)
<∞
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where
√

2 < λ̃ ≤ λ. By our choice of kn ≈ ρn, with ρ sufficiently close to one, this
can be replaced by

∞∑
n=1

P
(
Skn ≥

˜̃
λφ (kn)

)
<∞

with
√

2 < ˜̃
λ still. This follows from estimate (1) above.

The lower bound is somewhat similar, and uses the other half of Borel-Cantelli
applied to Yn = Skn+1 − Skn .

�

Theorem 7.3 (Berry-Esseen). Let Xi be i.i.d with mean zero and variance one.
If E

[
|X|2+α

]
<∞ for some α > 0, then there exists C <∞, δ > 0 so that

sup
−∞<b<∞

∣∣P ( Sk√
k
≥ b
)
− P (Z > b)

∣∣ ≤ C

kδ

where Z is the standard normal distribution.

The proof of the Berry-Esseen CLT is an extended exercise in characteristic
functions. See pp. 69-71 of the text.





CHAPTER 4

Dependent Random Variables

1. Conditioning
Lecture 11
11/22/11Let us begin with the discrete case. If X,Y are random variables with countable

many values, we can define their joint distribution function

f (x, y) = P (X = x, Y = y) .

Then the conditional probability of X given Y is

P
(
X = x

∣∣Y = y
)

=
f (x, y)

P (Y = y)
=

f (x, y)∑
x′ f (x′, y)

= f
(
x
∣∣ y) .

For each y-value, this gives a probability distribution on x-values that depends on
y. (Later we will discuss a generalization, called “regular conditional distribution”
that works for general real-valued random variables.) Given f

(
x
∣∣ y), we can define

the conditional expectation

E
[
X
∣∣Y = y

]
=
∑
x

xf
(
x
∣∣ y) ,

which depends on y. We’ll want to look at this as a function of Y ,

E
[
X
∣∣Y ] =

∑
x

f
(
x
∣∣Y ) .

This can be generalized to the notion of conditional expectation of X with respect
to Σ, written E

[
X
∣∣Σ]. Σ here is sometimes denoted σ (Y ), and is the σ-field

generated by Y , i.e. the smallest σ-field for which Y is measurable. More generally,
we have E

[
X
∣∣G], where G is any sub-σ-field of the original σ-field in the probability

space on which X was defined, and where X is any random variable with E [|X|] <
∞.

In the discrete case, we have the following property. Let A be a set of values
taken on by Y , then

E
[
E
[
X
∣∣Y ] · 1{Y ∈A}] =

∑
y∈A

E
[
X
∣∣Y = y

]
P (Y = y)

=
∑
y∈A

∑
x

x
f (x, y)

P (Y = y)
P (Y = y)

= E
[
X · 1{Y ∈A}

]
.

This identity will be a defining property of the conditional expectation E
[
X
∣∣Y ]

(likewise E
[
X
∣∣Σ]), along with being a function of Y (or being Σ-measurable).

Definitions 1.1. Let (Ω,F , P ) be a probability space, let Σ be a sub-σ-field
of F , and let X be a (F-measurable) random variable with E [|X|] < ∞. The

43
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conditional expectation of X given Σ, denoted E
[
X
∣∣Σ], is any random variable W

on (Ω,F , P ) with the following properties:
• W is Σ-measurable,
• For all A ∈ Σ, E [X · 1A] = E [W · 1A].

Given B ∈ F , we define the conditional probability of B given Σ by

P
(
B
∣∣Σ) = E

[
1B
∣∣Σ] .

Note. We can change a candidate W on a set of measure zero without affecting
the result. Also note that E

[
X
∣∣Y ] from before is E

[
X
∣∣Σ] where Σ is the pre-

image of the Borel sets under Y . (The smallest σ-field on which Y is measurable.)

Proposition 1.2. If W and W̃ are both conditional expectations of X given
Σ, then W = W̃ almost surely.

So conditional expectation is defined exactly up to a set of measure zero (but
is otherwise unique). We have yet to show the general existence of E

[
X
∣∣Σ]. Here

are some special cases:
(1) If X is already Σ-measurable, then we can take E

[
X
∣∣Σ] = X.

(2) If X is independent of Σ, i.e. if for A ∈ Σ we have E [X · 1A] = E [X] ·
E [1A] = E [X] · P (A), we can take E

[
X
∣∣Σ] = E [X]. In this case,

E
[
X
∣∣Σ] is almost surely a constant. But since X is independent of Σ,

conditioning does not give any more information about X.
(3) If E

[
X2
]
<∞, then by regarding X as an element of L2 (Ω,F , P ) we can

take E
[
X
∣∣Σ] as being obtained from X by orthogonal projection onto

the subspace L2 (Ω,Σ, P ) ⊂ L2 (Ω,F , P ). See exercise 4.9 in the text.
This last condition E

[
X2
]
< ∞ is unnatural from the view of probability theory.

In what follows, we’ll show that E
[
X
∣∣Σ] exists provided only that E [|X|] < ∞.

Instead of starting with the L2 case and approximating the L1 case, we’ll proceed
via the Radon-Nikodym theorem.

Definition 1.3. Let λ, µ be finite, non-negative measures on (Ω,F). We’ll say
λ is absolutely continuous w.r.t. µ (λ� µ) if for any A ∈ F with µ (F ) = 0 we also
have λ (A) = 0.

Examples 1.4. Consider (R,Borel sets).

(1) If λ1 (A) =
∫
A

1√
2π
e−x

2/2 dx and µ1 (A) =
∫
A∩[0,1]

dx, then µ1 � λ1 but
not the other way.

(2) If λ2 =
∑∞
i=1 2−iδ1/i and µ2 = δ1/3, then µ2 � λ2 but not the other way.

Now consider a general measure space (Ω,F , µ). If f is a non-negative mea-
surable function, we can define a measure by setting λ (A) =

∫
A
f dµ. Then λ� µ

automatically. The next theorem says that this is really the only example.

Theorem 1.5 (Radon-Nikodym). If λ� µ, then there exists a non-negative F-
measurable function f (with

∫
Ω
f dµ <∞) so that λ (A) =

∫
A
f dµ for any A ∈ F .

We call f the Radon-Nikodym derivative of λ w.r.t. µ and write dλ
dµ = f .

Example 1.6. Let λi, µi be as in the previous example. Then

dµ1

dλ1
(x) =

{√
2πex

2/2 0 ≤ x ≤ 1
0 otherwise



1. CONDITIONING 45

and

dµ2

dµ2
(x) =


4 x = 1

3

0 x = 1
i , i 6= 3

anything otherwise
.

Proposition 1.7. Let (Ω,F , P ) be a measure space and let Σ be a sub-σ-field.
If X is F-measurable with E [|X|] <∞, then E

[
X
∣∣Σ] exists.

Proof. Write X = X+ − X− where X+ = X · 1{X≥0} and X− = −X ·
1{X≤0}. Note X+ and X− are both integrable on (Ω,F , P ). Define measures λ+

and λ− on (Ω,F) by λ± (A) =
∫
A
X± dP (so that dλ±

dP = X±). Now let P̃ , λ̃± be
the restrictions of P, λ± to the smaller σ-field Σ. These are (finite) non-negative
measures on (Ω,Σ). Since λ± � P , λ̃± � P̃ . By Radon-Nikodym, dfλ±

dP̃
exists. So

take

E
[
X
∣∣Σ] =

dλ̃+

dP̃
− dλ̃−

dP̃
.

The desired properties follow from Radon-Nikodym. �

Theorem 1.8. Conditional expectation satisfies the following almost surely:
(1) E

[
E
[
X
∣∣Σ]] = E [X], E

[
1
∣∣Σ] = 1

(2) X ≥ 0 =⇒ E
[
X
∣∣Σ] ≥ 0

(3) E
[
a1X1 + a2X2

∣∣Σ] = a1E
[
X1

∣∣Σ]+ a2E
[
X2

∣∣Σ]
(4) E

[
|E
[
X
∣∣Σ]|] ≤ E [|X|] (conditional triangle inequality)

(5) If Y is Σ-measurable (and bounded), then E
[
XY

∣∣Σ] = Y E
[
X
∣∣Σ].

(6) If Σ2 ⊂ Σ1 ⊂ F , then E
[
X
∣∣Σ2

]
= E

[
E
[
X
∣∣Σ1

] ∣∣Σ2

]
.

(7) If φ is a convex real-valued function on R, then E
[
φ (X)

∣∣Σ] ≥ φ (E [X ∣∣Σ]).
(conditional Jensen’s inequality)

Remark. Taking the expectation of Jensen’s inequality in (7) yields E [φ (X)] ≥
E
[
φ
(
E
[
X
∣∣Σ])].

Proof of (7). Observe (2) and (3) give that if X ≥ Y , then E
[
X
∣∣Σ] ≥

E
[
Y
∣∣Σ] almost surely. So

E
[
sup {Yi}

∣∣Σ] ≥ E [Yi ∣∣Σ]
for all i, and so

E
[
sup {Yi}

∣∣Σ] ≥ sup
i

{
E
[
Yi
∣∣Σ]} .

Recall any convex φ can be written as φ (x) = supi {aix+ bi} for countably many
ai, bi’s. Hence

E
[
φ (X)

∣∣Σ] = E

[
sup
i
{aiX + bi}

∣∣Σ]
≥ sup

i

{
E
[
aiX + bi

∣∣Σ]}
= sup

i

{
aiE

[
X
∣∣Σ]+ bi

}
= φ

(
E
[
X
∣∣Σ])

almost surely. �
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Lecture 12
11/29/11In our setup, P

(
B
∣∣Σ) = E

[
1B
∣∣Σ] is a Σ-measurable random variable and so

depends on ω ∈ Ω by default. We can indicate this by writing P
(
B
∣∣ω). But we can

also think of this as depending on B. The object P
(
B
∣∣ω) has some nice properties,

e.g. for countably many disjoint Bj ’s we have P
(
∪jBj

∣∣ω) =
∑
j P
(
Bj
∣∣ω) almost

surely. (Follows from linearity of conditional expectation.) This hints that for fixed
ω ∈ Ω, we might view this as a probability measure. But there is a technical
problem. Since P

(
B
∣∣ω) is only defined up to a null set, and since we may have

uncountably many B’s to consider (in the non-discrete setting), their corresponding
null sets could “add up” to a non-null set. (The uncountable union of null sets can
be non-null.) So it may be difficult to construct an object P

(
B
∣∣ω) which, for a.e.

ω, is a probability measure on the B’s. Such a (nice) P
(
B
∣∣ω) is called a regular

conditional probability. These do not always exist, but have been found in many
cases. The similar object P

(
Y ∈ A

∣∣ω) is called a regular conditional distribution
of Y given Σ.

2. Markov Chains and Random Walks

Let (X ,F) be a measurable space. The state space X could be, for example,
R or Rd, or {0, 1, 2, . . . }, or Zd. These are all typical examples from the subject
of Markov chains. To study (or construct) independent X -valued random variables
X0, X1, X2, . . . , we can consider the infinite product space (X∞,F∞,Π∞i=1νi) =
(X ,F , ν1)×(X ,F , ν2)×· · · where ν0, ν1, . . . are any probability measures on (X ,F).
But this is really boring. Often we want to study X0, X1, . . . which have a more
interesting dependence structure. Here, the subscript k may represent (discrete)
time. For example, one might want to construct a measure µ on (X∞,F∞) so that

µ (A0 ×A1 ×A2) =
[∫

A0

π0 (dx0)
[∫

A1

π1 (x0; dx1)
[∫

A2

π2 (x0, x1; dx2)
]]]

where πk is a regular conditional distribution of Xk given σ (X0, . . . , Xk−1). Note
π0 is usually denoted as µ0.

Definitions 2.1. A sequence X0, X1, . . . is called a Markov process if for each
k, πk (x0, . . . , xk−1; ·) depends only on xk−1, i.e. it equals some πk−1,k (xk−1; ·). The
πk−1,k (xk−1;A)’s are called transition probabilities. If πk−1,k (x;A) does not depend
on k, i.e. it equals π (x,A) for all k, then the process is called time-homogeneous
and is said to have stationary transition probabilities.

Thus Markov processes have very short memory, in that the future depends on
on the present and not on the past. In a time-homogeneous Markov process, the
probability measure µ on (X∞,F∞) is completely determined by π (x,A) and the
initial distribution µ0 (for X0). This can be proved using the Kolmogorov extension
theorem.

In a general Markov process, the l-step transition probability from Xk to Xk+l,
denoted πk,k+l (x,A), is defined by

πk,k+l (xk, A) = P
(
Xk+l ∈ A

∣∣σ (Xk)
)

= P
(
Xk+l ∈ A

∣∣σ (X0, . . . , Xk)
)
.

The second equality is essentially the defining property of a Markov process. The
l-step transition probability is given in terms of the 1-step transition probabilities
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by

πk,k+l (xk, A)

=
∫
xk+1∈X

· · ·
∫
xk+l−1∈X

∫
xk+l∈A

πk,k+1 (xk; dxk+1)πk+1,k+2 (xk+1; dxk+2)

· · ·πk+l−1,k+l (xk+l−1, dxk+l) .

This easily yields

Theorem 2.2 (Chapman-Kolmogorov Equations). For k < m < n,

πk,n (x, dw) =
∫
y∈X

πk,m (x, dy)πm,n (y, dw) .

In a time-homogeneous process, we have

πk,k+l (x, dw) = some π(l) (x, dw)

=
∫
X
· · ·
∫
X
π (x, dy1) · · ·π (yl−1, dw)

and the Chapman-Kolmogorov equations become

π(l1+l2) (x, dw) =
∫
y∈X

π(l1) (x, dy)π(l2) (y, dw) .

Here are some important examples of time-homogeneous Markov processes.

Examples 2.3.
(1) Finite state space. Say X = {1, . . . , n}, then

π (i, {j}) = P
(
Xk+1 = j

∣∣Xk = i
)

is a n × n transition matrix M with Mij = π (i, {j}). The l-step transi-
tion probabilities are given by π(l) (i, {j}) =

(
M l
)
ij

, and the Chapman-
Kolmogorov equations are(

Mk+l
)
ij

=
[
Mk ·M l

]
ij

=
n∑
p=1

(
Mk
)
ip

(
M l
)
pj
.

(2) Random walk on Zd. Now X = Zd, and one takes ξ1, ξ2, . . . to be i.i.d. Zd-
valued random variables. In particular, the simple symmetric random walk
has ξ1 = (1, 0, . . . , 0) , or (−1, 0, . . . , 0) , or (0, 1, . . . , 0) , or (0,−1, . . . , 0),
and so on, each with probability 1/ (2d). Given X0 with distribution µ0,
e.g. µ0 = δ(0,...,0), we set Xn = X0 +

∑n
i=1 ξi. Here,

π (x, {y}) =

{
1
2d if y is a nearest neighbor of x
0 otherwise

.

(3) Random walk on R. Xn = X0 +
∑n
i=1Wi where Wi’s are i.i.d. real-valued

r.v.s with common distribution µ on R, independent of X0. Here

π (x,A) = µ (A− x)

= µ ({z ∈ R : z = y − x for some y ∈ A}) .
A special case is with {Wi} being i.i.d., standard normal r.v.s. Then

π (x,A) =
∫
A

1√
2π
e−(y−x)2/2 dy.
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This is closed related to Brownian motion.

3. Transience and RecurrenceLecture 13
12/6/11 Consider a time-homogenous Markov chain {Xi} on X with transition prob-

ability π(·, ·). If Xn has distribution µn (dx), then Xn+1 will have distribution
µn+1 (dx) =

∫
x∈X µn (dx)π (x, dy).

Definition 3.1. A probability measure µ on X is called an invariant measure
if ∫

x∈X
µ (dx)π (x, dy) = µ (dy) .

So if µ0 = µ is invariant, then one has µ1 = µ0, µ2 = µ0, etc. If µ0 is
not invariant, then in general µn will depend on n. However, if µn has a limit µ
which is a probability measure, then that limit must be an invariant distribution.
See sections 4.6, 4.7 in the text for more information. Some Markov chains have a
unique invariant distribution, some have many, and some have none. This is related
to the notions of transience and recurrence, which we study now.

Definition 3.2. A r.v. τ : X∞ → {0, 1, 2, . . . ,∞} such that {ω : τ (ω) = n} is
measurable w.r.t. σ (X0, . . . , Xn) for all n is said to be a stopping time.

Example 3.3. If X is countable (e.g. Rd) and y ∈ X , let τy be the time n of
the first visit (n > 0) to y. If y is never visited, set τy = ∞. The r.v. τy is an
example of a stopping time.

From here on we assume X is countable.

Definitions 3.4. A (time homogeneous) Markov chain {Xi} is called irre-
ducible if Px (τy <∞) > 0 for all x, y ∈ X . (Here, Px is the probability distribution
for {Xi} when X0 = x.) A state x is called transient if Px (τx <∞) < 1 (or
Px (Tx =∞) > 0); a state is called recurrent if it is not transient. A state x is
called positive recurrent if Ex [τx] <∞, and is called null recurrent if it is recurrent
but not positive recurrent.

Lemma 3.5. In an irreducible Markov chain, all states are of the same type.

The proof uses the following “renewal property” of Markov chains: let Fn =
σ (X0, . . . , Xn), then

Px
{
Xτx+1 = x1, . . . , Xτx+n = xn

∣∣Fτx} = Px {X1 = x1, . . . , Xn = x} .

This property is used throughout the study of Markov chains.

Proposition 3.6. Let {Xi} be a Markov chain and let N be the number of
visits to y (possibly including a visit at n = 0). Then,

G (x, y) =
∞∑
n=0

π(n) (x, y) = Ex [N ] .

Proof. We have N =
∑∞
n=0 1{Xn=y} and Ex

[
1{Xn=y}

]
= Px (Xn = y) =

π(n) (x, y). Now just sum up the expectations. �

With this formula in hand we can prove the following theorem.
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Theorem 3.7. Let f (x, y) = Px (τy <∞). An irreducible Markov chain is
transient iff G (x, y) < ∞ for all x, y (equivalently, for some x, y). Also, we have
the relations

G (x, y) = f (x, y)G (y, y) ,

G (x, x) =
1

1− f (x, x)
.

Proof. By the renewal property, after each return to x the probablity of never
returning again is 1− f (x, x). Thus

Px {exactly n returns to x} = (f (x, x))n (1− f (x, x)) .

Summing up gives the formula for G (x, x), from which the rest follows. �

Example 3.8. Simple symmetric random walk on Rd. We have recurrence/transience
if
∑
m π

(m) (0, 0) is infinite/finite. Since π(m) (0, 0) = 0 if m is odd we only need
to estimate π(2n) (0, 0). For d = 1, 2 this can be done directly, by an application
of Stirling’s formula. For d ≥ 3, one can use Fourier series to attack the problem
indirectly. The conclusion for general d is that π(2n) (0, 0) ∼ Cn−d/2 as n→∞. So
we have recurrence in d = 1, 2 and transience otherwise.

Now we discuss periodicity.

Definition 3.9. An irreducible Markov chain is said to be aperiodic if, for all
x ∈ X , π(n) (x, x) > 0 for large enough n. An irreducible Markov chain is said to
be periodic with period d > 1 if, for all x ∈ X , π(n) (x, x) = 0 for n not divisible by
d and π(n) (x, x) > 0 for n divisible by d and large.

Lemma 3.10. Every irreducible Markov chain is either periodic with period
d > 1 or aperiodic.

Example 3.11. The simple symmetric random walk on Rd is periodic with
period d = 2.

Recall a recurrent chain is postiive recurrent if Ex [τx] < ∞ or else null re-
current. Also recall if π(n) (x, y) → q (y), a probability density, as n → ∞ then
the limit is the limit of the distributions of Xn with X0 = x and q is an invariant
distribution. Is there a relationship between positive recurence and the existence
of an invariant distribution?

Theorem 3.12. For recurrent aperiodic chains, null recurrence implies that
π(n) (x, y)→ 0 as n→∞ for all x, y. Posivite recurrence implies that π(n) (x, y)→
(Ey (τy))−1 = q (y) as n → ∞, and q is an invariant distribution. In particular,∑
y∈X q (y) = 1.

Proof sketch. The proof is elementary but long. Here are the salient points.
For large n, π(n) (x, y) is (approximately) the probaiblity that the chain is at
y after many steps. Since Ex [τx] is the mean return time to x, π(n) (x, y) is
also (approximately) the asymptotic fraction of time spent at y, which should be
1/ (mean return time). �

There are analogous theorems in the periodic case.


	Chapter 1. Introduction to Probability Theory
	1. Probability Spaces
	2. Measure Theoretic Integration
	3. Product Spaces and Product Measures
	4. Distributions and Expectations

	Chapter 2. Weak Convergence
	1. Characteristic Functions
	2. Weak Convergence

	Chapter 3. Independent Random Variables
	1. Independence and Convolution
	2. Weak Law of Large Numbers
	3. Strong Law of Large Numbers
	4. Kolmogorov's 0-1 Law
	5. Central Limit Theorem
	6. Triangular Arrays and Infinite Divisibility
	7. Law of the Iterated Logarithm

	Chapter 4. Dependent Random Variables
	1. Conditioning
	2. Markov Chains and Random Walks
	3. Transience and Recurrence


